LIMITED OFFER

## Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Skip to main content# General Engineering Science in SI Units

## The Commonwealth and International Library: Mechanical Engineering Division

## Purchase options

## Save 50% on book bundles

## Institutional subscription on ScienceDirect

Request a sales quote

Contents

Preface

Use of Distinguishing Type For Symbols

Drawing Symbols

Section 1. Concurrent Forces

1.1 Introduction

1.2 Resultant of a Number of Coplanar, Concurrent Forces

1.3 Equilibrium of a System of Coplanar, Concurrent Forces

1.4 Experimental Justification of the "Polygon of Forces"

1.5 Resolution of Forces

1.6 Calculation of the Resultant of Two Mutually Perpendicular Forces

1.7 Resultant of Concurrent Forces by Resolution

1.8 Sign Conventions

1.9 Notation For Forces

1.10 Equilibrant'

1.11 Equilibrium

1.12 Equilibrium on A Smooth Inclined Plane

Exercises

Section 2. Velocity and Acceleration

2.1 Motion

2.2 Velocity

2.3 Acceleration

2.4 Distance-Time Graphs

2.5 Velocity-Time Graphs

2.6 Average Velocity During Uniformly Accelerated Motion

2.7 Other Relationships For Uniformly Accelerated Motion

2.8 Acceleration of a Falling Body

2.9 Compounding and Resolution of Velocities

2.10 Relative Velocity

2.11 Angular Velocity

2.12 Relation Between Angular and Linear Velocity

Exercises

Section 3. Force and Motion

3.1 Introduction

3.2 Newton's First Law of Motion: Inertia

3.3 Momentum

3.4 Newton's Second Law of Motion

3.5 Units of Force and Weight

3.6 Mass and Inertia

3.7 Newton's Third Law of Motion

3.8 Experiment—Fletcher's Trolley

Exercises

Section 4. Power and Energy

4.1 Introduction

4.2 Graphical Representation of the Work Done by A Variable Force

4.3 Work Done by A Force Inclined To The Direction of Motion

4.4 Power

4.5 Efficiency

4.6 Torque

4.7 Simple Torsion

4.8 Experiment—Measurement of Brake Or Output Power

4.9 Mechanical Energy

Exercises

Section 5. Strength of Materials

5.1 Introduction

5.2 Elasticity

5.3 Plasticity

5.4 Ductility and Malleability

5.5 Hardness

5.6 Brittleness

5.7 Ultimate Strength

5.8 Complete Load-Extension Graph For A Ductile Material

5.9 Load-Extension Graphs For Brittle Materials

5.10 Factor of Safety

Exercises

Section 6. Heat

6.1 Introduction

6.2 Coefficient of Linear Expansion of a Solid

6.3 Coefficient of Superficial Expansion of a Solid

6.4 Coefficient of Cubical Expansion of Solids and Liquids

6.5 Variation in the Values of Coefficients of Expansion

6.6 Maximum Density of Water

6.7 Coefficient of Cubical Expansion of a Gas

6.8 Charles' Law

6.9 Experimental Verification of Charles' Law

6.10 Boyle's Law

6.11 Experimental Verification of Boyle's Law

6.12 Combination of Boyle's and Charles' Laws

6.13 Standard Temperature and Pressure

Exercises

Section 7. Electricity

7.1 Introduction

7.2 Electromotive Force and Potential Difference

7.3 Energy Expended in An Electric Circuit

7.4 Power in Electric Circuits

7.5 Heat Produced in a Resistor

7.6 Effect of Temperature Change On Resistance

7.7 Temperature Coefficient of Resistance

Exercises

Section 8. Electromagnetism

8.1 Introduction

8.2 Permanent Magnetism

8.3 Magnetic Fields

8.4 Magnetic Effect of An Electric Current

8.5 Magnetic Field of a Current in a Single Circular Loop

8.6 Magnetic Field of a Solenoid

8.7 Forces Between Current-Carrying Conductors

8.8 Force Between Two Long, Parallel Conductors Carrying Current

8.9 Rotation of a Coil in a Uniform Magnetic

8.10 Effects of Magnetic Materials

8.11 Magnitude of the Force Between Two Long Parallel Conductors Carrying Current

8.12 The Ampere

8.13 Force On A Conductor Carrying Current When in a Magnetic Field

8.14 Direction of the Force On A Conductor in a Magnetic Field

Exercises

Section 9. Electromagnetic Induction

9.1 Introduction

9.2 Induced E.M.F.

9.3 Magnitude of An Induced E.M.F.

9.4 Unit of Magnetic Flux

9.5 Direction of Induced E.M.F.: Lenz's Law

9.6 Magnitude of Induced E.M.F.: Flux-Cutting Rule

9.7 Fleming's Right-Hand Rule

9.8 Rotation of a Coil in a Uniform Magnetic Field

9.9 Alternating Quantities

9.10 Effective Value of An Alternating Current: R.M.S. Value

9.11 Mean, Or Average, Value of An Alternating Current Or Voltage

Exercises

Section 10. Ammeters and Voltmeters

10.1 Introduction

10.2 Permanent-Magnet Moving-Coil (P.M.M.C.) Instrument

10.3 Extension of Range

10.4 P.M.M.C. Voltmeters

10.5 Advantages and Limitations of P.M.M.C. Instruments

10.6 Moving-Iron Instruments

10.7 Attraction-Type M.I. Ammeters

10.8 Repulsion-Type Ammeters

10.9 Combination Types

10.10 Moving-Iron Voltmeters

Exercises

List of Tables

Coefficients of Linear Expansion

Temperature Coefficients of Resistance

Common Units, Symbols and Abbreviations

Multiples and Sub-Multiples

Conversion Factors

Common Logarithms

Antilogarithms

Trigonometric Functions

Save up to 20% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 20% on print and eBooks.

1st Edition - January 1, 1971

Author: G. W. Marr

Editor: N. Hiller

Language: EnglisheBook ISBN:

9 7 8 - 1 - 4 8 3 1 - 5 2 3 2 - 5

General Engineering Science in SI Units, Volume 2 focuses on engineering science. The volume first offers information on concurrent forces, including calculation of the resultant… Read more

LIMITED OFFER

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

General Engineering Science in SI Units, Volume 2 focuses on engineering science. The volume first offers information on concurrent forces, including calculation of the resultant of two mutually perpendicular forces; equilibrium of a system of coplanar, concurrent forces; resolution and notation of forces; and equilibrium on a smooth inclined plane. The text then discusses velocity and acceleration. Topics include average velocity during uniformly accelerated motion; compounding and resolution of velocities; relative and angular velocities; and the relation of angular and linear velocities. The book takes a look at force and motion, power and energy, and strength of materials, including Newton's laws of motion, mass and inertia, power, efficiency, torque, elasticity, and ultimate strength. The volume also touches on heat and electricity. Topics include coefficient of cubical expansion of solids and liquids; maximum density of water; electromotive force and potential difference; and effect of temperature change on resistance. Electromagnetism and electronic induction are also discussed. The text is a primary reference for readers interested in engineering science.

Contents

Preface

Use of Distinguishing Type For Symbols

Drawing Symbols

Section 1. Concurrent Forces

1.1 Introduction

1.2 Resultant of a Number of Coplanar, Concurrent Forces

1.3 Equilibrium of a System of Coplanar, Concurrent Forces

1.4 Experimental Justification of the "Polygon of Forces"

1.5 Resolution of Forces

1.6 Calculation of the Resultant of Two Mutually Perpendicular Forces

1.7 Resultant of Concurrent Forces by Resolution

1.8 Sign Conventions

1.9 Notation For Forces

1.10 Equilibrant'

1.11 Equilibrium

1.12 Equilibrium on A Smooth Inclined Plane

Exercises

Section 2. Velocity and Acceleration

2.1 Motion

2.2 Velocity

2.3 Acceleration

2.4 Distance-Time Graphs

2.5 Velocity-Time Graphs

2.6 Average Velocity During Uniformly Accelerated Motion

2.7 Other Relationships For Uniformly Accelerated Motion

2.8 Acceleration of a Falling Body

2.9 Compounding and Resolution of Velocities

2.10 Relative Velocity

2.11 Angular Velocity

2.12 Relation Between Angular and Linear Velocity

Exercises

Section 3. Force and Motion

3.1 Introduction

3.2 Newton's First Law of Motion: Inertia

3.3 Momentum

3.4 Newton's Second Law of Motion

3.5 Units of Force and Weight

3.6 Mass and Inertia

3.7 Newton's Third Law of Motion

3.8 Experiment—Fletcher's Trolley

Exercises

Section 4. Power and Energy

4.1 Introduction

4.2 Graphical Representation of the Work Done by A Variable Force

4.3 Work Done by A Force Inclined To The Direction of Motion

4.4 Power

4.5 Efficiency

4.6 Torque

4.7 Simple Torsion

4.8 Experiment—Measurement of Brake Or Output Power

4.9 Mechanical Energy

Exercises

Section 5. Strength of Materials

5.1 Introduction

5.2 Elasticity

5.3 Plasticity

5.4 Ductility and Malleability

5.5 Hardness

5.6 Brittleness

5.7 Ultimate Strength

5.8 Complete Load-Extension Graph For A Ductile Material

5.9 Load-Extension Graphs For Brittle Materials

5.10 Factor of Safety

Exercises

Section 6. Heat

6.1 Introduction

6.2 Coefficient of Linear Expansion of a Solid

6.3 Coefficient of Superficial Expansion of a Solid

6.4 Coefficient of Cubical Expansion of Solids and Liquids

6.5 Variation in the Values of Coefficients of Expansion

6.6 Maximum Density of Water

6.7 Coefficient of Cubical Expansion of a Gas

6.8 Charles' Law

6.9 Experimental Verification of Charles' Law

6.10 Boyle's Law

6.11 Experimental Verification of Boyle's Law

6.12 Combination of Boyle's and Charles' Laws

6.13 Standard Temperature and Pressure

Exercises

Section 7. Electricity

7.1 Introduction

7.2 Electromotive Force and Potential Difference

7.3 Energy Expended in An Electric Circuit

7.4 Power in Electric Circuits

7.5 Heat Produced in a Resistor

7.6 Effect of Temperature Change On Resistance

7.7 Temperature Coefficient of Resistance

Exercises

Section 8. Electromagnetism

8.1 Introduction

8.2 Permanent Magnetism

8.3 Magnetic Fields

8.4 Magnetic Effect of An Electric Current

8.5 Magnetic Field of a Current in a Single Circular Loop

8.6 Magnetic Field of a Solenoid

8.7 Forces Between Current-Carrying Conductors

8.8 Force Between Two Long, Parallel Conductors Carrying Current

8.9 Rotation of a Coil in a Uniform Magnetic

8.10 Effects of Magnetic Materials

8.11 Magnitude of the Force Between Two Long Parallel Conductors Carrying Current

8.12 The Ampere

8.13 Force On A Conductor Carrying Current When in a Magnetic Field

8.14 Direction of the Force On A Conductor in a Magnetic Field

Exercises

Section 9. Electromagnetic Induction

9.1 Introduction

9.2 Induced E.M.F.

9.3 Magnitude of An Induced E.M.F.

9.4 Unit of Magnetic Flux

9.5 Direction of Induced E.M.F.: Lenz's Law

9.6 Magnitude of Induced E.M.F.: Flux-Cutting Rule

9.7 Fleming's Right-Hand Rule

9.8 Rotation of a Coil in a Uniform Magnetic Field

9.9 Alternating Quantities

9.10 Effective Value of An Alternating Current: R.M.S. Value

9.11 Mean, Or Average, Value of An Alternating Current Or Voltage

Exercises

Section 10. Ammeters and Voltmeters

10.1 Introduction

10.2 Permanent-Magnet Moving-Coil (P.M.M.C.) Instrument

10.3 Extension of Range

10.4 P.M.M.C. Voltmeters

10.5 Advantages and Limitations of P.M.M.C. Instruments

10.6 Moving-Iron Instruments

10.7 Attraction-Type M.I. Ammeters

10.8 Repulsion-Type Ammeters

10.9 Combination Types

10.10 Moving-Iron Voltmeters

Exercises

List of Tables

Coefficients of Linear Expansion

Temperature Coefficients of Resistance

Common Units, Symbols and Abbreviations

Multiples and Sub-Multiples

Conversion Factors

Common Logarithms

Antilogarithms

Trigonometric Functions

- No. of pages: 230
- Language: English
- Edition: 1
- Published: January 1, 1971
- Imprint: Pergamon
- eBook ISBN: 9781483152325

Read *General Engineering Science in SI Units* on ScienceDirect