LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Flexible devices based on metal oxides: Achievements and prospects focuses on the integration of flexibility in electronic circuitry, sensing applications, energy conversio… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Flexible devices based on metal oxides: Achievements and prospects focuses on the integration of flexibility in electronic circuitry, sensing applications, energy conversion and storage, and environmental remediation. Flexibility in these applications offers great potential, especially in the areas of wearable sensors, solar cells, transistors, electronic skin, and human body monitoring. The book investigates flexible and wearable devices based on metal oxide nanostructures or thin films that are capable of bending, rolling, compression, and folding, all while maintaining their performance.
Metal oxide nanomaterials display exceptional properties that include mechanical stress tolerance, high optical transparency, high carrier mobilities, wide band gap, high dielectric constant, and superconductivity, amongst others. In some cases, they are also earth abundant, environmentally benign, cost-effective, chemically stable, and compatible with low-cost wet-chemical synthesis routes. The focus of the book is on wearables manufactured using sustainable manufacturing methods and integrated into substrates that are flexible, inexpensive, recyclable, abundant, and lightweight, including polymer, textile, cellulose and cork substrates.
Academics and industry professionals in flexible and wearable devices in the fields of electronics, sensing, energy conversion and storage, and environmental remediation, Researchers interested in sustainable and low-cost methods to produce metal oxides
DN
AP
PB
MM
Prof. Manuel J. Mendes was born in Lisbon, in 1982. He received the Engineering degree in Physics in 2005 from Instituto Superior Técnico, Univ. de Lisboa (IST-UL), the Master of Science degree in Applied Physics in 2008 from Rice University (Houston, USA), and the Ph.D. in Photovoltaic Solar Energy in 2012 from Instituto de Energía Solar (Madrid, Spain) on the novel topic of Nanophotonics for Multi-Band Photovoltaics.
He has been involved in >35 projects in energy-related areas while working in USA (2005-08), Spain (2008-12), Italy (2012-14) and Portugal (2014-present). His research in Portugal has been performed at the Materials Research Center CENIMAT-i3N of NOVA School of Science & Technology (Univ. Nova de Lisboa), where he has been PI of 6 projects (3 national, 3 European) and institution responsible for other 6 projects (5 national, 1 European) related with Photonic-enhanced Solar Cells, Quantum-structured Semiconductors, Building-integrated photovoltaics (BIPV) and Solar Fuels. Overall, he attracted a total funding of ~6 M€ to NOVA via projects that he coordinated.
He has acted as reviewer for >40 scientific journals, is author of >70 peer-reviewed publications, and co-inventor of 2 U.S. Patents. The first patent was distinguished with an award from NASA Inventions and Contributions Board, and the second opened a research line in plasmonic intermediate-band solar cells.
He has been awarded with 2 prestigious Marie Curie Experienced-Research Fellowships (in 2012 and 2014) related with light management for solar cells, as well as 10 prestigious scientific honours, such as the 2020 FEMS Communication Award for Excellence in Materials Science & Eng. and the 2021 IN3+ Award of Imprensa Nacional Casa da Moeda (INCM) - the highest national prize for individual innovation projects.
In 2023, an ERC Consolidator Grant was awarded to his project X-STREAM (Power-to-X: Streaming Hydrogen from 3-Band Solar Cells boosted with Photonic Management).
JC
João Coelho is a researcher at NOVA School of Science and Technology (FCT NOVA), one of the three largest and most prestigious schools of Engineering and Sciences in Portugal. In 2007, he received his Bachelor degree in physics followed by a Master degree in 2009 (Faculty of Sciences, University of Porto). In 2016, he was awarded his PhD degree by Trinity College Dublin, Ireland. During this period, he became a materials scientist focused on the processing of 2D-materials for energy storage/conversion applications. Throughout this process, he developed crucial skills not only on materials synthesis and characterization, but in the design, fabrication and testing of supercapacitors and lithium-ion batteries. He had the chance to work with world renowned scientists and companies, such as Nokia Bell Labs and to participate in several international scientific meeting, such as MRS Spring and ECS Prime. These collaborations led to publications in high impact journals, namely Science and Nature, resulting a h-index of 19. Besides technical and scientific work, he is passionate about teaching and science outreach activities. Up to now, he has supervised several BSc, MSc and one PhD thesis.
In 2020, after being selected for the prestigious Individual Call to Scientific Employment Stimulus, he joined the Materials Research Center (CENIMAT) of the Associated Laboratory i3N, the Institute of Nanostructures, Nanomodeling and Nanofabrication (FCT NOVA). Currently, his research objectives are focused on the development and integration of flexible energy storage devices, produced by inkjet printing and laser engraving.
EF
RM
HA
Henrique Vazão de Almeida received his Bachelor’s and Master’s degrees in Materials Engineering from Universidade NOVA (2007). Before starting his Ph.D., he worked in the Biomaterials field for 5 years (Industry-based). Henrique graduated in 2016 with his Ph.D. in Bioengineering from Trinity College Dublin, Ireland (Daniel J. Kelly and Fergal O’Brien as supervisors). In 2016, Henrique started to work as a Postdoc at Lino Ferreira’s Lab (University of Coimbra), and in 2017 he was awarded an FCT postdoctoral fellowship. In the context of the postdoctoral fellowship in cardiac tissue engineering, he moved to ITQB/iBET (2018). In 2019, he was awarded a junior PI funding (iBETXplore) to execute a project in the context of 3D bioprinted tissues for drug screening and disease modeling. In 2021, Henrique was awarded the “Individual Call to Scientific Employment Stimulus - 3rd Edition” fellowship. In the context of his recently granted award, Henrique moved to CENIMAT|i3N (2022).
Henrique is a bioengineer, material engineer, and expert in nature-derived biomaterials. He is interested in novel tissue engineering and regenerative medicine approaches to restore damaged biological tissues and bioengineer in vitro models. Currently, he is focused on developing cardiac tissue engineering strategies based on conductive biomaterials. He also started to work with point-of-care devices for disease management and regenerative medicine.