Limited Offer
Executing Data Quality Projects
Ten Steps to Quality Data and Trusted Information (TM)
- 2nd Edition - May 21, 2021
- Author: Danette McGilvray
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 1 8 0 1 5 - 0
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 1 8 0 1 6 - 7
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and informati… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteExecuting Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization.
Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today’s data-dependent organizations.
The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action.
This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization’s standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all.
The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before.
- Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach
- Contains real examples from around the world, gleaned from the author’s consulting practice and from those who implemented based on her training courses and the earlier edition of the book
- Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices
- A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
Anyone responsible for the quality of data and information. Individual contributors and practitioners, along with managers of those doing the data quality work, project or program managers, and internal or external consultants. Practitioners: data analysts, data stewards, business analysts, subject-matter experts, developers, programmers, business process or data modelers/designers, database administrators
1. Data Quality and the Data-Dependent World2. Data Quality in Action3. Key Concepts4. The Ten Steps Process5. Structuring Your Project6. Other Techniques and Tools7. A Few Final WordsAppendix: Quick References
- No. of pages: 376
- Language: English
- Edition: 2
- Published: May 21, 2021
- Imprint: Academic Press
- Paperback ISBN: 9780128180150
- eBook ISBN: 9780128180167
DM