LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Entropy of Complex Processes and Systems formalizes our understanding of many complex processes, including the development of the methodology of analytical computation of complex p… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Entropy of Complex Processes and Systems formalizes our understanding of many complex processes, including the development of the methodology of analytical computation of complex processes as applied in many industries, such as ore processing, or more generally, in areas of natural sciences. The adequacy of the results of these calculations is confirmed by numerous experimental data obtained both on pilots and industrial facilities. The book also provides a thorough analysis of the underlying physical foundations of entropy performed from new standpoints that are of interest to theoreticians studying contemporary expositions.
Scientists and students in (chemical) engineering sciences dealing with mass random processes and systems. Engineers in chemical technology working in industry dealing with the optimization of complex industrial processes
1. Brief history, properties and problems of the entropy parameter 1.1. Thermodynamic entropy1.2. Statistical substantiation of entropy1.3. Substantiation of the statistical analysis validity1.4. Some problematic aspects of entropy1.5. Gibbs paradox and problems of gaseous systems separation 1.6. Actual separation of gases1.7. Solution of the Gibbs’ paradox1.8. Phenomenological problems of the second lawa. Essence of the problemb. Thermodynamic aspects of biological systems
2. Statistical component of entropy2.1. Notions of randomness, chaos and stability2.2. Probabilistic characteristics2.3. Random values and distribution functions2.4. Probabilistic interpretation of granulometric characteristics of a poly-fractional mixture of solid particles2.5. Determination of average values of random quantities 2.6. Possibility of single-valued evaluation of complicated compositions of various systems 2.7. Uncertainty of mixture composition 2.8. Separation efficiency 2.9. Separation optimality condition according to the entropic criterion for binary mixtures2.10. Objective evaluation of multi-component systems separation 2.11. Example of optimization of separation into four components 2.12. Mathematical model of separation into n components 2.13. Unambiguous evaluation of the completeness of a complicated object in the process of building 2.14. Unambiguous evaluation of complex treatment of natural resources
3. Dynamic component of entropy3.1. Modeling and analogy – bases of comprehending dynamic systems 3.2. Justification of physical analogy3.3. Justification of statistical model of two-phase flows in critical regimes3.4. Determination of distribution parameters 3.5. Justification of entropy parameter of two-phase flows 3.6. Main properties of dynamic entropy characterizing a two-phase flow3.7. Steady state as a condition of entropy maximality3.8. Regarding the formation of the parameter of a dynamic system entropy 3.9. Entropy and probability distribution3.10. Multi-dimensional statistical model of a two-phase flow3.11. Mobility of a two-phase flow3.12. Other invariants for a two-phase flow3.13. Canonical distributions in the determination of statistical ensembles for two-phase flows 3.14. Statistical analysis of mass exchange in a two-phase flow 3.15. Statistical parameters of mass exchange
4. Checking the adequacy of entropic model of two-phase flows in separation regimes4.1. Mathematical model of polyfractional mixture redistribution in a multi-stage cascade4.2. Experimental checking of theoretical conclusions 4.3. Unified separation curves4.4. Generalizing invariant4.5. Determining distribution coefficients of solid phase in a two-phase flow 4.6. Computation of distribution coefficients4.7. Development of the method of separation processes calculation 4.8. Determining of generalizing invariants for all separation regimes 4.9. Relationship between the structural and cellular models of the process 4.10. Generalizing criteria
5. Place of the entropy parameter in modern science5.1. Problematical character of entropy5.2. General properties of entropy5.3. Development as an increasing complexity а. Physical complexityb. Biological complexityс. Development of civilization5.4. Biological systems and Darwinism5.5. Basic aspects of entropy5.6. Some world-view aspects of entropy5.7. Conclusion
EB