
Electronic Methods
Methods of Experimental Physics
- 2nd Edition - January 1, 1975
- Imprint: Academic Press
- Editors: E. Bleuler, R. O. Haxby
- Language: English
- Paperback ISBN:9 7 8 - 1 - 4 8 3 1 - 7 5 9 5 - 9
- eBook ISBN:9 7 8 - 1 - 4 8 3 1 - 9 1 7 6 - 8
Methods of Experimental Physics, Volume 2 – Part A: Electronic Methods, Second Edition focuses on techniques and experimental methods involving vacuum-tube and solid-state… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteMethods of Experimental Physics, Volume 2 – Part A: Electronic Methods, Second Edition focuses on techniques and experimental methods involving vacuum-tube and solid-state electronic devices and vacuum-tube circuitry. This volume consists of eight main topics—passive linear circuit elements and networks, semiconductor circuit elements, vacuum tubes, gas tubes, rectifier circuits and power supplies, amplifiers, oscillators, and nonlinear circuits. In these topics, this book specifically discusses the relations between time and frequency response; devices employing bulk semiconductor properties; Richardson-Dushman equation; and gas tube phenomena. The full-wave rectifiers with capacitive load; vacuum tube and field-effect transistor bias circuits; and harmonic oscillators are also elaborated. This text likewise covers the oscillators that use negative resistance devices; field-effect transistors; and analog-to-digital (A/D) converters. This publication is a good source for physicists and students interested in techniques and methods involving electronic equipment.
Contributors to Volume 2, Part A
Foreword
Contents of Volume 2, Part B
Contributors to Volume 2, Part B
1. Passive Linear Circuit Elements and Networks
1.1. Basic Principles and Terminology
1.1.1. The Lumped Elements R, L, C
1.1.2. Mutual Inductance; Transformers
1.1.3. Voltage and Current Sources
1.1.4. Kirchhoff's Laws
1.1.5. Complex Notation; Zeros and Poles
1.1.6. Relations between Time and Frequency Response
1.1.7. Impedance and Admittance; Series and Parallel Components
1.1.8. Power Relationships
1.1.9. DC Circuits
1.2. Network Theory
1.2.1. Network Topology
1.2.2. Loop Analysis
1.2.3. Node Analysis
1.2.4. The Superposition Principle
1.2.5. Reciprocity
1.2.6. Thevenin's and Norton's Theorems
1.2.7. Power Transfer and Impedance Matching
1.2.8. Simple Resonant Circuits; Duality
1.2.9. Simple Transients
1.3. Two-Terminal-Pair Networks; Filters
1.3.1. Network Parameters
1.3.2. Specific Structures
1.3.3. Filters
1.4. Distributed Constant Networks
1.4.1. Transmission Lines
1.4.2. Electromechanical Devices
1.5. Components
1.5.1. General Standards; Tolerance and Preferred Values
1.5.2. Resistors
1.5.3. Capacitors
1.5.4. Inductors and Transformers
1.6. Construction Techniques
1.6.1. Shielding; Skin Effect
1.6.2. Grounding Considerations
1.6.3. Component Mounting
1.6.4. Temperature Considerations
2. Semiconductor Circuit Elements
2.1. Introduction
2.2. Discrete Semiconductor Devices
2.2.1. Devices Employing Bulk Semiconductor Properties
2.2.2. P-N Junction and Barrier Diodes
2.2.3. Transistors
2.2.4. Multiregion Devices
2.2.5. Device Symbols
2.2.6. Some Examples of Discrete Devices
2.3. Integrated Circuits (ICs)
2.3.1. Introduction
2.3.2. Monolithic Integrated Circuits
2.3.3. Hybrid Integrated Circuits
3. Vacuum Tubes
3.1. Thermionic Emission
3.1.1. The Richardson-Dushman Equation—The Schottky Effect
3.1.2. Types of Cathodes
3.1.3. Types, Operation, Physical Shapes of Cathodes .
3.2. Diodes
3.2.1. General Diode Characteristics
3.2.2. Transit-Time Effects
3.3. Triodes
3.3.1. Description of Triodes
3.3.2. Characteristics of Triodes
3.3.3. Equivalent Circuits of Triodes
3.4. Multielement Tubes
3.4.1. Tetrodes, Pentodes, Beam Tubes
3.4.2. Mixers and Converters—Hexode, Heptode, Pentagrid
3.4.3. Secondary Electron Tubes
3.5. Selection of Tubes
3.5.1. Vacuum Tubes and Solid State
3.5.2. Microwave Triodes and Tetrodes
4. Gas Tubes
4.1. Gaseous Electronic Devices
4.2. Gas Tube Phenomena
4.3. Corona Devices
4.3.1. Corona High-Voltage Regulator Tubes
4.4. Glow Devices
4.4.1. Voltage Regulator Tubes
4.4.2. Voltage Reference Tubes
4.4.3. Glow Indicator and Counting Tubes
5. Rectifier Circuits and Power Supplies
5.1. Rectifier Circuits
5.1.1. Rectifiers, General
5.1.2. Half-Wave Circuits
5.1.3. Full-Wave Rectifiers with Capacitive Load . . .
5.1.4. Full-Wave and Polyphase Rectifiers with Inductive Load
5.1.5. Voltage-Multiplying Rectifiers
5.1.6. DC to DC Converters
5.1.7. Additional Filtering of Rectifier Output
5.1.8. Selecting a Rectifying Device
5.1.9. Ratings of Rectifier Components
4.5. Arc Devices
4.5.1. Gas Rectifiers
4.5.2. Thyratrons
4.5.3. Hydrogen Thyratrons
4.5.4. Ignitrons
4.5.5. Spark Gaps
4.5.6. Triggered Spark Gaps
4.5.7. Triggered Vacuum Gaps
4.6. Microwave Gas Tubes
4.7. Tube and Spark Gap Ratings: Definitions
4.7.1. Maximum Peak Inverse Voltage
4.7.2. Maximum Peak Forward Voltage
4.7.3. Maximum Average Current
4.7.4. Maximum Peak Anode Current
4.7.5. Maximum Surge Anode Current
4.7.6. Arc Drop or Anode Voltage Drop
4.7.7. Commutation Factor
4.7.8. Ionization Time
4.7.9. De-Ionization Time
4.7.10. Jitter
4.7.11. Anode Dissipation Factor
5.2. Controlled Rectifier Circuits
5.2.1. Device Properties
5.2.2. Control Circuit Principles
5.2.3. Typical Controlled-Rectifier Applications
5.3. Regulated Power Supplies
5.3.1. AC Voltage and Current Regulators
5.3.2. DC Voltage and Current Regulators
6. Amplifiers
6.1. Specification
6.1.1. Signal Specification
6.1.2. Noise Specification
6.1.3. Amplifier Specification
6.2. Basic Amplifier Stages
6.2.1. Single-Stage Amplifiers
6.2.2. Transistor Bias Circuits
6.2.3. Vacuum Tube and Field-Effect Transistor Bias Circuits
6.2.4. Equivalent Circuits
6.2.5. Single-Stage Transistor Amplifier Limitations
6.2.6. Extension to Multistage Connections; Coupling Methods
6.2.7. Computer-Aided Design
6.2.8. Summary
6.3. Direct Coupled Amplifiers
6.3.1. Definitions and General Considerations
6.3.2. Two-Stage Direct Coupled Amplifiers
6.3.3. Differential Amplifiers
6.3.4. Electrometer Amplifiers
6.3.5. Chopper Amplifiers
6.3.6. Summary
6.4. Broadband Amplifiers (Video, Pulse)
6.4.1. Definitions
6.4.2. Design Considerations
6.4.3. Conclusions
6.5. Operational Amplifiers
6.5.1. Definitions
6.5.2. Design Considerations
6.5.3. Conclusions
6.6. Tuned Amplifiers
6.6.1. Definitions; Basic Types; Relation to Signal Specifications
6.6.2. Design Considerations
6.6.3. Conclusions
6.7. Power Amplifiers
6.7.1. Definitions
6.7.2. Design Considerations
6.7.3. Conclusions
6.8. Low-Noise Amplifiers
6.8.1. Definitions
6.8.2. Design Considerations
6.8.3. Summary
6.9. Active Filters
6.9.1. Definitions and General Considerations
6.9.2. Design Considerations
6.9.3. Summary
6.10. Modulators and Detectors
6.10.1. Definitions
6.10.2. Examples of Basic Types
6.10.3. Conclusions
7. Oscillators
7.1. General Considerations
7.2. Harmonic Oscillators
7.2.1. Circuit Configurations
7.2.2. Voltage Control
7.2.3. Conclusions
7.3. Relaxation Oscillators
7.3.1. General Description
7.3.2. Oscillators That Use Negative Resistance Devices
7.3.3. Astable Circuits
7.3.4. Summary
8. Nonlinear Circuits
8.1. General Discussion
8.2. Nonlinear Devices
8.2.1. Junction Transistors
8.2.2. Field-Effect Transistors
8.2.3. Diodes
8.3. Nonregenerative Nonlinear Circuits
8.3.1. Limiters
8.3.2. Linear Gates
8.3.3. Comparators
8.3.4. Clamping Circuits
8.3.5. Pulse Stretchers
8.3.6. Other Nonregenerative Nonlinearities
8.4. Regenerative Nonlinear Circuits
8.4.1. Schmitt Trigger
8.4.2. Monostable Multivibrator
8.4.3. Flip-Flop (Bistable Multivibrator)
8.4.4. Sweep Circuits
8.5. Special Circuits
8.5.1. Mixers, Multipliers, Square-Law Devices
8.5.2. Automatic Gain Control
8.5.3. Transistor Core Drivers
8.6. Logic Circuits
8.6.1. Logic Design
8.6.2. Analog-to-Digital (A/D) Converters
8.6.3. Digital-to-Analog (D/A) Converters
Author Index
Subject Index
- Edition: 2
- Published: January 1, 1975
- No. of pages (eBook): 460
- Imprint: Academic Press
- Language: English
- Paperback ISBN: 9781483175959
- eBook ISBN: 9781483191768
EB
E. Bleuler
Affiliations and expertise
Department of Physics, Purdue UniversityRH
R. O. Haxby
Affiliations and expertise
Department of Physics, Purdue UniversityRead Electronic Methods on ScienceDirect