
Dietary Fiber, Gut Microbiota, and Health
- 1st Edition - November 22, 2024
- Imprint: Academic Press
- Editors: Shaoping Nie, Huizi Tan, Qixing Nie
- Language: English
- Paperback ISBN:9 7 8 - 0 - 4 4 3 - 2 1 6 3 0 - 5
- eBook ISBN:9 7 8 - 0 - 4 4 3 - 2 1 6 3 1 - 2
Dietary Fiber, Gut Microbiota and Health covers the most recent advances in the functionalities of dietary fiber with a focus on the underlying mechanisms that influence gut micro… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteDietary Fiber, Gut Microbiota and Health covers the most recent advances in the functionalities of dietary fiber with a focus on the underlying mechanisms that influence gut microbiota. In four sections, this work begins with foundational information on the human gut microbiome and moves to more advanced knowledge on various types of dietary fiber and the impact of each on the gut microbiome before finally covering health outcomes and the potential for personalized applications of fiber for improved health. It will serve as an invaluable reference to dieticians, researchers, and graduate and post-graduate students in nutrition, food science, pharmaceutical science and beyond.
- Describes basic science of gut microbiome and effects on human health
- Covers sources, characteristics, and actions of fiber on gut microbiota
- Structures chapters for comparison of fiber types
Scientists and postgraduate students interested in functional foods, nutrition, pharmaceutical science, microbiology, biology, and biochemistry, Dieticians and related medical professionals
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Contributors
- Section I. Background: An overview of dietary fiber and gut microbiome
- Chapter 1. Introduction
- 1.1 Dietary fiber
- 1.1.1 Introduction
- 1.1.2 Categories
- 1.1.2.1 By solubility
- 1.1.2.2 By sources
- 1.1.2.3 By structural characteristics
- 1.1.2.4 Variations
- 1.1.3 Processing
- 1.1.4 Varieties in functions and applications
- 1.2 Gut microbiome
- 1.2.1 Introduction
- 1.2.2 Microbiome and human health
- 1.2.3 Microbiome and diet
- Section II. Structure and functionalities: Dietary fiber contributes to the gut health
- Chapter 2. Nondigestible oligosaccharides
- 2.1 Introduction
- 2.1.1 Source of nondigestible oligosaccharides
- 2.1.1.1 Depolymerization
- 2.1.1.2 Synthesis
- 2.1.2 Category of nondigestible oligosaccharides
- 2.1.2.1 Fructooligosaccharides
- 2.1.2.2 Galactooligosaccharides
- 2.1.2.3 Xylose-oligosaccharides
- 2.1.2.4 Isomaltooligosaccharides
- 2.1.2.5 Chitosan-oligosaccharides
- 2.1.2.6 Mannooligosaccharides
- 2.1.2.7 Human milk oligosaccharides
- 2.2 Application of nondigestible oligosaccharides
- 2.2.1 Food preservation and shelf life improvement
- 2.2.2 Control of germs in crops
- 2.2.3 Biomaterials
- 2.2.4 Antimicrobial agents
- 2.2.5 Functional food ingredient
- 2.3 Role of nondigestible oligosaccharides in gut microbiota profile
- 2.3.1 Obesity
- 2.3.2 Type 2 diabetes
- 2.3.3 Inflammatory bowel diseases
- 2.3.4 Colorectal cancer
- Chapter 3. Pectin
- 3.1 Introduction
- 3.1.1 Source
- 3.1.2 Category
- 3.1.3 Physicochemical and/or structural characteristics
- 3.2 Bioactivities
- 3.2.1 Metabolism regulation
- 3.2.2 Inflammation modulation
- 3.2.3 Carcinogen prevention
- 3.3 Gut microbiota profiles
- 3.3.1 Obesity
- 3.3.2 Diabetes
- 3.3.3 Cardiovascular disorders
- 3.3.4 Liver disease
- 3.3.5 Inflammatory bowel disease
- 3.3.6 Colon cancer
- Chapter 4. Glucans
- 4.1 Introduction
- 4.1.1 Source and category
- 4.1.1.1 Cereal β-glucans
- 4.1.1.2 Microbial-derived β-glucan
- 4.1.2 Physicochemical and/or structural characteristics
- 4.1.2.1 Physicochemical characteristics
- 4.1.2.2 Structural characteristics
- 4.2 Bioactivities
- 4.2.1 Obesity
- 4.2.2 Diabetes
- 4.2.3 Cardiovascular disorders
- 4.2.4 Liver disease
- 4.2.4.1 Nonalcoholic fatty liver disease
- 4.2.4.2 Alcoholic fatty liver disease
- 4.2.4.3 Acute liver injury
- 4.2.5 Inflammatory bowel disease
- 4.2.6 Colon cancer
- 4.2.7 Gastrointestinal health
- 4.2.7.1 Short-chain fatty acids
- 4.2.7.2 Modulation of intestinal barrier function
- 4.3 Gut microbiota profiles
- 4.3.1 Roseburia
- 4.3.2 Bifidobacterium
- 4.3.3 Lactobacillus
- 4.3.4 Other bacteria
- Chapter 5. Fructans
- 5.1 Introduction
- 5.1.1 Overview of fructans
- 5.1.1.1 Definition and source
- 5.1.1.2 Classification of fructans
- 5.1.2 Sources of inulin-type fructan
- 5.1.3 Category of inulin-type fructans
- 5.1.3.1 Natural inulin
- 5.1.3.2 Synthetic inulin
- 5.1.3.3 Gene-modified inulin
- 5.1.4 Production of inulin-type fructan
- 5.1.5 Physicochemical characteristics of inulin-type fructans
- 5.1.5.1 Solubility
- 5.1.5.2 Acid thermal stability
- 5.1.5.3 Adsorption characteristics
- 5.1.5.4 Chemistry of inulin-type fructan
- 5.1.6 Applications of inulin-type fructans
- 5.1.6.1 As bifidus-promoting agent
- 5.1.6.2 As a sugar replacer
- 5.1.6.3 As a dietary fiber enhancer
- 5.1.6.4 As a viscosity modifier
- 5.1.7 Inulin-incorporated food products
- 5.2 Bioactivities
- 5.2.1 Maintain blood glucose homeostasis
- 5.2.2 Promote cardiovascular health
- 5.2.3 Promoting mineral absorption and bone health
- 5.2.4 Regulate inflammation and immunity
- 5.2.5 Control appetite and satiety
- 5.3 The relationship between inulin-type fructan and gut microbiota
- 5.3.1 Alteration of gut microbiota
- 5.3.2 Production of functional metabolites
- 5.3.3 Prebiotic effect
- 5.3.4 Interactions between inulin-type fructans and gut microbiota
- 5.3.4.1 Benefits to digestive disease
- 5.3.4.2 Benefits to immune system and prevention against different infection
- 5.3.4.3 Benefits to metabolic syndrome
- 5.4 Beneficial functions of inulin-type fructan and potential mechanisms associated with gut microbiota
- 5.4.1 Modulating the immune system
- 5.4.2 Maintaining gastrointestinal health
- 5.4.3 Improving metabolic diseases
- 5.4.4 Other effects (prevention of osteoporosis)
- Chapter 6. Seed-extracted mucilages: Galactomannan
- 6.1 Introduction
- 6.1.1 Source
- 6.1.1.1 Traditional sources of seed gums
- 6.1.1.2 New sources of seed gums
- 6.1.2 Category
- 6.1.2.1 Locust bean gum
- 6.1.2.2 Tara gum
- 6.1.2.3 Guar gum
- 6.1.2.4 Fenugreek seed gum
- 6.1.3 Physicochemical and/or structural characteristics
- 6.1.3.1 Structure-extraction
- 6.1.3.2 Physical properties
- 6.1.4 Modifications
- 6.1.4.1 Ultrasonic depolymerization
- 6.1.4.2 Radiation
- 6.1.4.3 Electric field
- 6.1.4.4 High hydrostatic pressure
- 6.1.4.5 High-pressure homogenization
- 6.1.4.6 Extrusion
- 6.1.4.7 Electrospinning method-nanofiber fabrication
- 6.1.4.8 Cold plasma
- 6.2 Bioactivities
- 6.2.1 Bioactivities of locust bean gum
- 6.2.2 Bioactivities of guar gum
- 6.2.3 Bioactivities of fenugreek seed gum
- 6.2.3.1 Hypoglycemic
- 6.2.3.2 Hypolipidemic
- 6.2.3.3 Antioxidant activity
- 6.2.3.4 Protect gastric mucosa
- 6.2.3.5 Antiinflammatory
- 6.3 Gut microbiota profiles (in multiple models)
- 6.3.1 Galactomannan and gut bacteria in normal human
- 6.3.2 Galactomannan and gut bacteria in disease model
- 6.3.2.1 Obesity
- 6.3.2.2 Diabetes
- 6.3.2.3 Inflammatory bowel diseases
- 6.3.2.4 Colon cancer
- Chapter 7. Tree-extracted mucilages: Arabinogalactan
- 7.1 Introduction
- 7.1.1 Sources
- 7.1.2 Physicochemical characteristics
- 7.1.3 Structural characteristics
- 7.2 Bioactivities
- 7.2.1 Antioxidation
- 7.2.2 Antitumor
- 7.2.3 Maintain intestinal homeostasis
- 7.2.4 Antidiabetic
- 7.2.5 Antiinflammatory
- 7.2.6 Improve arthritis
- 7.3 Gut microbiota profiles (in multiple models)
- 7.3.1 Obesity
- 7.3.2 Diabetes
- 7.3.3 Cardiovascular disorders
- 7.3.4 Chronic kidney disease
- 7.3.5 Inflammatory bowel diseases
- 7.3.6 Interaction between arabinogalactans and gut microbiota
- Chapter 8. Plantago seed-extracted mucilages: Arabinoxylan
- 8.1 Introduction
- 8.1.1 Source
- 8.1.2 Extraction, separation, and purification
- 8.1.3 Physicochemical characteristics
- 8.1.3.1 Physical property
- 8.1.3.2 Chemical property
- 8.1.4 Rheological property
- 8.1.5 Structural characteristics
- 8.2 Bioactivities
- 8.2.1 Regulation of glucose and lipid metabolism
- 8.2.1.1 Clinical trial
- 8.2.1.2 Animal experiments
- 8.2.2 Improve intestinal health
- 8.2.2.1 Clinical trial
- 8.2.2.2 Animal experiments
- 8.2.3 Immunomodulatory effect
- 8.2.4 Others
- 8.3 Potential prebiotic activity of Plantago seed polysaccharides
- 8.3.1 Nondigestible
- 8.3.2 Fermentable by gut microbiota
- 8.3.3 Stimulation of activity and growth of gut microbiota
- Chapter 9. Seaweed-extracted mucilages: Sulfated and uronic acid-containing fiber
- 9.1 Introduction
- 9.2 Category
- 9.3 Structural characteristics and sources of primary seaweed-derived dietary fibers
- 9.3.1 Dietary fibers from brown seaweed
- 9.3.1.1 Fucoidan
- 9.3.1.2 Alginate
- 9.3.1.3 Laminarin
- 9.3.2 Dietary fibers from red seaweed
- 9.3.2.1 Carrageenan
- 9.3.2.2 Agar and agaroid
- 9.3.3 Dietary fiber from green seaweed
- 9.3.3.1 Ulvan
- 9.4 Bioactivities and application
- 9.4.1 Regulating metabolic disorders
- 9.4.2 Antioxidant activity
- 9.4.3 Immunomodulatory activity
- 9.4.4 Antitumor activity
- 9.4.5 Antiviral infections
- 9.4.6 Other activities
- 9.5 Modulation of marine polysaccharides on intestinal ecology
- 9.5.1 Gut microbiota fermentation of marine polysaccharides in vitro
- 9.5.2 Modulation of gut microbiota profiles in multiple models
- 9.5.2.1 Modulation of gut microbiota in healthy states
- 9.5.2.2 Modulation of gut microbiota in metabolic syndrome
- 9.5.2.3 Modulation of gut microbiota in intestinal inflammatory disorders
- 9.5.3 Carbohydrate degradation in manipulation of gut microbiota
- 9.6 Future prospects
- 9.6.1 Structure-activity relationships and mechanisms
- 9.6.2 Green production and precise techniques
- 9.6.3 Chemical modification and derivatives
- 9.7 Conclusions
- Chapter 10. Microbial gums: Xanthan gum
- 10.1 Introduction
- 10.1.1 Source
- 10.1.2 Structural characteristics and properties of xanthan gum
- 10.1.3 Biosynthesis pathway
- 10.1.3.1 Synthesis of phosphoglucose
- 10.1.3.2 Synthesis of nucleoside diphosphate sugar
- 10.1.3.3 Synthesis, assembly and secretion of xanthan gum pentasaccharide repeat unit
- 10.1.4 Factors affecting xanthan gum production
- 10.1.4.1 Composition of culture medium
- 10.1.4.2 Fermentation temperature
- 10.1.4.3 Fermentation broth pH
- 10.1.4.4 Dissolved oxygen
- 10.1.4.5 Incubation time
- 10.2 Bioactivities
- 10.2.1 Immunomodulation
- 10.2.2 Anticancer
- 10.2.3 Antidiabete
- 10.2.4 Antibacterial
- 10.2.5 As a capsule carrier in drug delivery systems
- 10.3 Gut microbiota profiles
- Chapter 11. Resistant starch
- 11.1 Introduction
- 11.1.1 Source
- 11.1.2 Category
- 11.1.3 Structural characteristics and physicochemical properties
- 11.1.3.1 RS1 (physically inaccessible starch)
- 11.1.3.2 RS2 (raw starch granules)
- 11.1.3.3 RS3 (retrograded starch)
- 11.1.3.4 RS4 (chemically modified starch)
- 11.1.3.5 RS5 (innovative starch complex)
- 11.2 Bioactivities
- 11.2.1 Gut health
- 11.2.2 Chronic inflammation
- 11.2.3 Body weight
- 11.2.4 Blood sugar
- 11.3 Gut microbiota profiles (in multiple models)
- 11.3.1 Obesity
- 11.3.2 Diabetes
- 11.3.3 Fatty liver diseases
- 11.3.4 Cardiovascular disease
- 11.3.5 Inflammatory bowel disease
- 11.3.6 Colon cancer
- Section III. Unveiling mechanisms: Dietary fiber–microbiome interactions and heath outcomes
- Chapter 12. Bacteroidetes
- 12.1 Introduction
- 12.2 Cross talk between dietary fiber and bacteroidetes
- 12.2.1 Degradation patterns
- 12.2.2 Mutual effects among microbial colonists
- 12.3 Impact of bacteroidetes and their metabolites on host health
- 12.3.1 Obesity
- 12.3.2 Diabetes
- 12.3.3 Cardiovascular disorders
- 12.3.4 Liver disease
- 12.3.5 Inflammatory bowel disease
- 12.3.6 Colon cancer
- Chapter 13. Firmicutes
- 13.1 Introduction
- 13.1.1 Gut Firmicutes
- 13.1.2 Dietary fiber
- 13.2 Cross talk between dietary fiber and gut Firmicutes
- 13.2.1 Dietary fiber: nutrition for gut Firmicutes
- 13.2.2 Degradation patterns
- 13.3 Impact of gut Firmicutes and dietary fiber on host health
- 13.3.1 The essential role of gut Firmicutes in health
- 13.3.2 Gut Firmicutes: agents of health promotion
- 13.3.3 Dietary fibers augment Firmicutes abundance and alleviate disease
- 13.4 Possible mechanisms of gut Firmicutes for health improvement
- 13.4.1 Gut permeability
- 13.4.2 Inflammation
- 13.4.3 Inflammatory bowel disease
- 13.4.4 Obesity, type 2 diabetes, and metabolic syndrome
- 13.4.5 Nonalcoholic fatty liver disease
- 13.4.6 Cardiovascular disorders
- 13.5 Conclusions and perspectives
- Chapter 14. Actinobacteria: Bifidobacterium
- 14.1 Introduction
- 14.2 Cross-talk between dietary fiber and Bifidobacterium
- 14.2.1 Degradation patterns
- 14.2.1.1 Carbohydrate active enzymes of Bifidobacterium
- 14.2.1.2 Carbohydrate intake by Bifidobacterium
- 14.2.1.3 Degradation of human milk oligosaccharides by Bifidobacterium
- 14.2.1.4 Degradation of plant oligosaccharides by Bifidobacterium
- 14.2.1.5 Effects of mucin and oligosaccharide on Bifidobacterium cross-feeding behavior
- 14.2.2 Effects of structural properties of dietary fiber on promoting Bifidobacterium
- 14.2.2.1 The degree of polymerization
- 14.2.2.2 The degree of substitution
- 14.2.2.3 Molecular order
- 14.2.2.4 Chemical modification
- 14.2.3 Effects of species difference of Bifidobacterium on degrading dietary fiber
- 14.3 Impact of Bifidobacterium and its metabolites on host health
- 14.3.1 Obesity
- 14.3.2 Diabetes
- 14.3.3 Inflammatory bowel disease and colon cancer
- Chapter 15. Verrucomicrobia: Akkermansia
- 15.1 Introduction
- 15.1.1 Colonization of Akkermansia genus
- 15.1.2 Isolation of Akkermansia genus
- 15.1.3 Microbiological characteristics of Akkermansia genus
- 15.1.4 Genomic characteristics of Akkermansia genus
- 15.2 Cross-talk between dietary fiber and Akkermansia muciniphila
- 15.2.1 Substrate utilization of Akkermansia muciniphila
- 15.2.1.1 Degradation pattern of dietary fiber by Akkermansia muciniphila
- 15.2.2 Regulation of Akkermansia muciniphila by dietary fibers
- 15.2.2.1 Regulation of Akkermansia muciniphila by nonstarch polysaccharides
- 15.2.2.2 Regulation of Akkermansia muciniphila by resistant starch
- 15.2.2.3 Regulation of Akkermansia muciniphila by oligosaccharides
- 15.2.3 Contradictory outcomes of dietary fibers in treatment of diseases by regulating Akkermansia muciniphila
- 15.3 Promising next-generation probiotics
- 15.3.1 Metabolic dysfunctions
- 15.3.1.1 Akkermansia muciniphila and obesity
- 15.3.1.2 Akkermansia muciniphila and diabetes
- 15.3.1.3 Akkermansia muciniphila and cardiovascular disease
- 15.3.1.4 Akkermansia muciniphila and nonalcoholic fatty liver disease
- 15.3.2 Intestinal barrier and inflammatory bowel disease
- 15.3.3 Immune regulation and other diseases
- 15.3.4 Mechanisms of beneficial functions of Akkermansia muciniphila
- 15.3.5 The clinical application prospects of Akkermansia muciniphila
- Section IV. Perspectives: Research and development of personalized applications
- Chapter 16. Dietary fiber-based products: Microbiota-oriented intervention
- 16.1 Introduction
- 16.2 Geriatric food
- 16.2.1 Texture modification
- 16.2.2 Taste and flavor
- 16.3 Clean-label food
- 16.4 Dietary fiber–microbiota–health axis
- 16.4.1 To analyze the fine structural basis of the functional activities of food-derived complex polysaccharides
- 16.4.2 To confirm the microbial features mediating the functional activities of food-derived complex polysaccharides
- 16.4.3 To explore the key biomarkers generated during the interventions of the food-derived complex polysaccharides
- 16.4.4 To establish the systemic biomarker network oriented by the food-derived complex polysaccharides
- 16.4.5 Key scientific technique: multiomics
- 16.5 Precision nutrition
- Index
- Edition: 1
- Published: November 22, 2024
- No. of pages (Paperback): 408
- No. of pages (eBook): 325
- Imprint: Academic Press
- Language: English
- Paperback ISBN: 9780443216305
- eBook ISBN: 9780443216312
SN
Shaoping Nie
HT
Huizi Tan
QN