
Deep Learning through Sparse and Low-Rank Modeling
- 1st Edition - April 11, 2019
- Imprint: Academic Press
- Authors: Zhangyang Wang, Yun Fu, Thomas S. Huang
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 1 3 6 5 9 - 1
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 1 3 6 6 0 - 7
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models—those that emphasize problem-specific Interpretability—with recent de… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteDeep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models—those that emphasize problem-specific Interpretability—with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining.
This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
- Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks
- Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models
- Provides tactics on how to build and apply customized deep learning models for various applications
Researchers and graduate students in computer vision, machine learning, signal processing, optimization, and statistics
- Edition: 1
- Published: April 11, 2019
- No. of pages (Paperback): 296
- Imprint: Academic Press
- Language: English
- Paperback ISBN: 9780128136591
- eBook ISBN: 9780128136607
ZW
Zhangyang Wang
YF
Yun Fu
TH