
An Introduction to Electrooptic Devices
Selected Reprints and Introductory Text By
- 1st Edition - May 28, 1974
- Imprint: Academic Press
- Author: Ivan P. Kaminow
- Language: English
- Paperback ISBN:9 7 8 - 1 - 4 8 3 2 - 0 5 0 6 - 9
- eBook ISBN:9 7 8 - 1 - 4 8 3 2 - 1 8 4 9 - 6
An Introduction to Electrooptic Devices aims to present an introduction to the electrooptic effect and to summarize work on devices employing the electrooptic effect. The book… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteAn Introduction to Electrooptic Devices aims to present an introduction to the electrooptic effect and to summarize work on devices employing the electrooptic effect. The book provides the necessary background in classical crystal optics. The text then discusses topics including crystal symmetry, the tensor description of linear dielectric properties, propagation in anisotropic media, and passive crystal optic devices. The book also describes the phenomenological description of tensor nonlinear dielectric properties of crystals, with emphasis on the electrooptic effect; device design and application; and a listing of linear electrooptic coefficients for various substances. People involved in the study of electrooptic devices will find the text invaluable.
PrefaceChapter I Crystal Optics 1. Crystallography 1.1 Bravais Lattice 1.2 Symmetry Operations of Point Groups 2. Tensor Properties 2.1 Dielectric Description 2.2 Coordinate Transformation 2.3 Transformation of Higher-Rank Tensors 2.4 Reduction of the Dielectric Tensor by Crystal Symmetry 3. Light Propagation in Anisotropic Crystals 3.1 Normal Modes of Propagation 3.2 Wave Vector Surfaces 3.3 Optical Indicatrix 3.4 Birefringence 3.5 Wave Plates 3.6 Compensators 3.7 Group Velocity and Dispersion 3.8 Optical Activity References Chapter II Nonlinear Dielectric Effects 1. Introduction 2. Electrooptic Effects 2.1 Tensor Definition 2.2 Deformation of the Optical Indicatrix 2.3 Electrooptic Modulation and Deflection 3. Elastooptic Effects 3.1 Tensor Definition 3.2 Acoustooptical Devices 3.3 Piezoelectric and Electrostrictive Contributions to the Electrooptic Effect 4. Nonlinear Optical Effects 4.1 Definitions of Nonlinear Optical Coefficients 4.2 Dispersion and Classification of Nonlinear Coefficients 4.3 Relationship between Electrooptic and Raman Scattering Coefficients 4.4 Permutation Relations 4.5 Phenomenological Origin of Nonlinearity References Chapter III Reprints 1. Reviews 1.1 I.P. Kaminow and E.H. Turner, Electrooptic light modulators, Proc. IEEE 54, 1374-1390 (1966) and Appl. Opt. 5, 1612-1628 (1966) 1.2 F.S. Chen, Modulators for optical communications, Proc. IEEE 58, 1440-1457 (1970) 1.3 I.P. Kaminow and E.H. Turner, Linear electrooptical materials, in "Handbook of Lasers" (R. J. Pressley, ed.), pp. 447-459, Chemical Rubber Co., Cleveland, Ohio, 1971 2. Characterization and Measurement of the Electrooptic Effect 2.1 F. Pockels, Effects of the Electrical and Magnetic Fields, in "Lehrbuch der Kristalloptic," Part IV, ChapterIII, pp. 492-510, Teubner, Leipzig, 1906 2.2 B.H. Billings, The electro-optic effect in uniaxial crystals of the type XH2P04.1. Theoretical, J.. Opt. Soc. Amer. 39, 797-801 (1949) 2.3 R.0'B. Carpenter, The electro-optic effect in uniaxial crystals of the dihydrogen phosphate type. III. Measurement of coefficients, J. Opt. Soc. Amer. 40, 225-229 (1950) 2.4 S. Namba, Electro-optical effect of zincblende, J. Opt. Soc. Amer. 51, 76-79 (1961) 2.5 I.P. Kaminow, Microwave modulation of the electro-optic effect in KH2P04, Phys. Rev. Lett. 6, 528-530 ( 1961 ) 2.6 A.R. Johnston, The strain-free electro-optic effect in single-crystal barium titanate, Appl. Phys. Lett. 1, 195-198 (1965) 2.7 I.P. Kaminow, Barium titanate light phase modulator, Appl. Phys. Lett. 7, 123-125 (1965); erratum 8, 54 (1966) 2.8 I.P. Kaminow, Barium titanate light modulator. II, Appl. Phys. Lett. 8,305-307 (1966) 2.9 E.H. Turner, High-frequency electro-optic coefficients of lithium niobate, Appl. Phys. Lett. 8, 303-304 (1966) 2.10 R.D. Rosner and E.H. Turner, Electrooptic coefficients in calcium pyroniobate, Appl. Opt. 7, 171-173 ( 1968) 2.11 D.F. Nelson and E.H. Turner, Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide, J. Appl. Phys. 39, 3337-3343 (1968) 2.12 I.P. Kaminow, Measurements of the electrooptic effect in CdS, ZnTe, and GaAs at 10.6 microns, IEEE J. Quantum Electron. QE-4, 23-26 (1968) 3. Lumped Electrooptic Modulators 3.1 R.T. Denton, F.S. Chen, and A.A. Ballman, Lithium tantalate light modulators, J. Appl. Phys. 38, 1611-1617 (1967) 3.2 I.P. Kaminow and W.M. Sharpless, Performance of LiTa03 and and LiNbO3 light modulators at 4 GHz, Appl. Opt. 6, 351-352 (1967) 3.3 W.H. Steier, A push-pull optical amplitude modulator, IEEE J. Quantum Electron. 3, 664-667 (1967) 3.4 K.K. Chow and W.B. Leonard, Efficient octave-bandwidth microwave light modulators, IEEE J. Quantum Electron. 6, 789-793(1970) 3.5 M.R. Biazzo, Fabrication of a lithium tantalate temperature stabilized optical modulator, Appl. Opt. 10, 1016-1021 (1971) 3.6 D.M. Henderson and R.L. Abrams, A comparison of acoustooptic and electrooptic modulators at 10.6 microns, Opt. Commun. 2, 223-226 (1970) 3.7 F.S. Chen, Evaluation of PLZT ceramics application in optical communications, Opt. Commun. 6, 297-30 (1972) 4. Traveling Wave Electrooptic Modulators 4.1 I.P. Kaminow, Splitting of Fabry-Perot rings by microwave modulation of light, Appl. Phys. Lett. 2, 41-42 (1963) 4.2 C.J. Peters, Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator, Proc. IEEE 53, 455-460 (1965) 4.3 W.E. Bicknell, B.K. Yap, and C. J. Peters, 0 to 3 GHz traveling-wave electrooptic modulator, Proc. IEEE 55, 225-226 (1967) 4.4 D.C. Auth, Half-octave bandwidth traveling-wave Z-band optical phase modulator, IEEEJ. Quantum Electron. 5, 622-623 (1969) 4.5 I.P. Kaminow, T.J. Bridges, and M. A. Pollack, A 964-GHz traveling-wave electro-optic light modulator, Appl. Phys. Lett. 16, 416-418 (1970) 4.6 G. White and G. M. Chin, Traveling wave electrooptic modulators, Opt. Commun. 5, 374-379 (1972) 5. Frequency Shifters and Pulse Compressor 5.1 C.F. Buhrer, D. Baird, and E.M. Conwell, Optical frequency shifting by electro-optic effect, Appl. Phys. Lett. 1, 46-49 (1962) 5.2 M.A. Duguay and J.W. Hansen, Optical frequency shifting of a mode-locked laser beam, IEEE J. Quantum Electron. 4, 477-481 (1968) 5.3 J.P. Campbell and M.H. Steier, Rotating-waveplate optical-frequency shifting in lithium niobate, IEEE J. Quantum Electron. 7, 450-457 (1971) 5.4 M.A. Duguay and J.W. Hansen, Compression of pulses from a mode-locked He-Ne laser, Appl. Phys. Lett. 14, 14-16 (1969) 6. Guided Wave Materials and Modulators 6.1 W.B. Gandrud, Reduced modulator drive-power requirements for 10.6-μ guided waves, IEEE J. Quantum Electron. 7, 580 ( 1971 ) 6.2 F.K. Reinhart, Reverse-biased gallium phosphide diodes as high-frequency light modulators, J. Appl. Phys. 39, 3426-3434 (1968) 6.3 F.K. Reinhart and B.I. Miller, Efficient GaAs-Alx Ga1-x As double-heterostructure light modulators, Appl. Phys. Lett. 20, 36-38 (1972) 6.4 D. Hall, A. Yariv, and E. Garmire, Optical guiding and electrooptic modulation in GaAs epitaxial layers, Opt. Commun. 1, 403-405 (1970) 6.5 D. Hall, A. Yariv, and E. Garmire, Observation of propagation cutoff and its control in thin optical waveguides, Appl. Phys. Lett. 17, 127-129 (1970) 6.6 J.N. Polky and J.H. Harris, Interdigital Electrooptic thin-film modulator, Appl. Phys. Lett. 21, 307-309 (1972) 6.7 E. Garmire, H. Stoll, A. Yariv, and R. G. Hunsperger, Optical waveguiding in proton-implanted GaAs, Appl. Phys. Lett. 21, 87-88 (1972) 6.8 H.F. Taylor, W.E. Martin, D.B. Hall, and V.N. Smiley, Fabrication of single-crystal semiconductor optical waveguides by solid-state diffusion, Appl. Phys. Lett. 21, 95-98 (1972) 6.9 V. Ramaswamy, Epitaxial electro-optic mixed crystal (NH4)x K1-x H2P04 film waveguide, Appl. Phys. Lett. 21, 183-185 (1972) 6.10 J.M. Hammer, D.J. Channin, M.T. Duffy, and J.P. Wittke, Low-loss epitaxial ZnO optical waveguides, Appl. Phys. Lett. 21, 358-360 (1972) 6.11 I.P. Kaminow and J.R. Carruthers, Optical waveguiding layers in LiNb03 and LiTa03, Appl. Phys. Lett. 21, 326-328 ( 1973 ) 6.12 I.P. Kaminow, J.R. Carruthers, E.H. Turner, and L.W. Stulz, Thin-film LiNb03 electro-optic light modulator, Appl. Phys. Lett. 22, 540-542 (1973) 6.13 P. K. Cheo, Pulse amplitude modulation of a C02 laser in an electrooptic thin-film waveguide, Appl. Phys. Lett. 22, 241-244 (1973) 7. Beam Deflectors and Diffractors 7.1 V J. Fowler and J. Schläfer, A survey of laser beam deflection techniques, Appl. Oct. 5, 1675-1682 (1966) 7.2 M.A. R.P. de Barros and M.G.F. Wilson, Nanosecond baseband optical-diffraction modulator, Electron. Lett. 7, 267 ( 1971 ) 7.3 J.M. Hammer, Digital electro-optic grating deflector and modulator, Appl Phys. Lett. 18, 147-149 (1971) 7.4 R.A. Meyer, Optical beam steering using a multichannel lithium tantalate crystal, Appl Opt. 11, 613-616 (1972) 8. Optical Damage 8.1 F.S. Chen, Optically induced change of refractive indices in LiNb03 and LiTa03, J. Appl Phys. 40, 3389-3396 (1969) 8.2 A.M. Glass, G.E. Peterson, and T.J. Negran, Optical index damage in electrooptic crystals, in "Laser Induced Damage in Optical Materials" (A. J. Glass and A. H. Guenther, eds.), pp. 15-26. Nat. Bur. Stand. Spec. Publ. 372, 1972 9. Kerr Effect Devices 9.1 D.F. Holshouser, H. Von Foerster, and G.L. Clark, Microwave modulation of light using the Kerr effect, J. Opt. Soc. Amer. 51, 1360-1365 (1969) 9.2 A.J. Chenoweth, O.L. Gaddy, and D.F. Holshouser, Carbon disulfide traveling-wave Kerr cells, Appl. Opt. 5, 1652-1656 ( 1966 ) 9.3 F.S. Chen, J.E. Geusic, S.K. Kurtz, J.G. Skinner, and S.H. Wemple, Light modulation and beam deflection with potassium tantalateniobate crystals, J. Appl. Phys. 37, 388-397 (1969) 9.4 M.A. Duguay and J.W. Hansen, An ultrafast light gate, Appl. Phys. Lett. 15, 192-194(1969) 10. Inverse Electrooptic Effect: Optical Rectification and Difference Frequency Mixing 10.1 J.F. Ward, Absolute measurement of an optical-rectification coefficient in ammonium dihydrogen phosphate, Phys. Rev. 143, 569-574 (1966) 10.2 T.J. Bridges and A.R. Strnad, Submillimeter wave generation by difference-frequency mixing in GaAs, Appl. Phys. Lett. 20, 382-384 (1972) 11. Lattice Contribution to the Electrooptic Effect 11.1 W.L. Faust, C.H. Henry, and R.H. Eick, Dispersion in the nonlinear susceptibility of GaP near the reststrahl band, Phys. Rev. 173, 781-786 (1968) 11.2 W.D. Johnston, Jr., and I.P. Kaminow, Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies, Phys. Rev. 188, 1209-1211 (1969) 11.3 G.D. Boyd, T.J. Bridges, M.A. Pollack, and E.H. Turner, Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals, Phys. Rev. Lett. 26, 387-390 (1971) 12. Dispersion of the Electrooptic Effect near the Band Edge 12.1 H. Pursey and P.A. Page, Dispersion of optical and electro-optical coefficients in semiconductors, J. Phys. C (Solid State Phys. ) 3, 431-437 (1970) 12.2 A.R. Johnston, Dispersion of electro-optic effect in BaTi03, J. Appl. Phys. 42, 3501-3507 (1971)Author IndexSubject Index
- Edition: 1
- Published: May 28, 1974
- No. of pages (eBook): 424
- Imprint: Academic Press
- Language: English
- Paperback ISBN: 9781483205069
- eBook ISBN: 9781483218496
Read An Introduction to Electrooptic Devices on ScienceDirect