LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Advanced Structural Textile Composites Forming: Characterization, Modeling, and Simulation comprehensively describes the influence of fiber/fabric architectures and propertie… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Advanced Structural Textile Composites Forming: Characterization, Modeling, and Simulation comprehensively describes the influence of fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization, covering the latest advances in the composites forming field. Part one reviews textile reinforcement architectures and discusses the forming behaviors of important 2D and 3D fabrics. Part two discusses numerical models to conduct simulation analysis of different structural composites forming at mesoscopic and macroscopic scales, in particular, 3D preforms with through-the-thickness yarns.
Part three looks at the latest developments in the relationship between forming and other steps in composite manufacturing, such as resin injection, and automated fiber placement (AFP) and the effects on certain mechanical properties, such as structural damage and impact resistance. The book will be an essential reference for academic researchers, industrial engineers and materials scientists working with the manufacture and design of fiber-reinforced composite materials.
PW
Peng Wang is a Professor of mechanical engineering at ENSISA of the University of Haute-Alsace, France. His primary research interests and expertise encompass textile composites forming, mechanical properties of textile reinforcements and composites, structure optimization, and process simulation. He particularly focuses on optimizing the manufacturing process and improving the service performance of composites by thoroughly studying the deformation behavior during the forming process of fiber-reinforced preforms.
NH