LIMITED OFFER

## Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Skip to main content# Advanced Calculus of Several Variables

## Purchase options

## Save 50% on book bundles

## Institutional subscription on ScienceDirect

Request a sales quote

Preface

I Euclidean Space and Linear Mappings

1 The Vector Space ℛn

2 Subspaces of ℛn

3 Inner Products and Orthogonality

4 Linear Mappings and Matrices

5 The Kernel and Image of a Linear Mapping

6 Determinants

7 Limits and Continuity

8 Elementary Topology of ℛn

II Multivariable Differential Calculus

1 Curves in ℛn

2 Directional Derivatives and the Differential

3 The Chain Rule

4 Lagrange Multipliers and the Classification of Critical Points for Functions of Two Variables

5 Maxima and Minima, Manifolds, and Lagrange Multipliers

6 Taylor's Formula for Single-Variable Functions

7 Taylor's Formula in Several Variables

8 The Classification of Critical Points

III Successive Approximations and Implicit Functions

1 Newton's Method and Contraction Mappings

2 The Multivariable Mean Value Theorem

3 The Inverse and Implicit Mapping Theorems

4 Manifolds in ℛn

5 Higher Derivatives

IV Multiple Integrals

1 Area and the 1-Dimensional Integral

2 Volume and the n-Dimensional Integral

3 Step Functions and Riemann Sums

4 Iterated Integrals and Fubini's Theorem

5 Change of Variables

6 Improper Integrals and Absolutely Integrable Functions

V Line and Surface Integrals; Differential Forms and Stokes' Theorem

1 Pathlength and Line Integrals

2 Green's Theorem

3 Multilinear Functions and the Area of a Parallelepiped

4 Surface Area

5 Differential Forms

6 Stokes' Theorem

7 The Classical Theorems of Vector Analysis

8 Closed and Exact Forms

VI The Calculus of Variations

1 Normed Vector Spaces and Uniform Convergence

2 Continuous Linear Mappings and Differentials

3 The Simplest Variational Problem

4 The Isoperimetric Problem

5 Multiple Integral Problems

Appendix: The Completeness of ℛ

Suggested Reading

Subject Index

Save up to 20% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 20% on print and eBooks.

1st Edition - January 1, 1973

Author: C. H. Edwards

Language: EnglisheBook ISBN:

9 7 8 - 1 - 4 8 3 2 - 6 8 0 5 - 7

Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra,… Read more

LIMITED OFFER

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.

Preface

I Euclidean Space and Linear Mappings

1 The Vector Space ℛn

2 Subspaces of ℛn

3 Inner Products and Orthogonality

4 Linear Mappings and Matrices

5 The Kernel and Image of a Linear Mapping

6 Determinants

7 Limits and Continuity

8 Elementary Topology of ℛn

II Multivariable Differential Calculus

1 Curves in ℛn

2 Directional Derivatives and the Differential

3 The Chain Rule

4 Lagrange Multipliers and the Classification of Critical Points for Functions of Two Variables

5 Maxima and Minima, Manifolds, and Lagrange Multipliers

6 Taylor's Formula for Single-Variable Functions

7 Taylor's Formula in Several Variables

8 The Classification of Critical Points

III Successive Approximations and Implicit Functions

1 Newton's Method and Contraction Mappings

2 The Multivariable Mean Value Theorem

3 The Inverse and Implicit Mapping Theorems

4 Manifolds in ℛn

5 Higher Derivatives

IV Multiple Integrals

1 Area and the 1-Dimensional Integral

2 Volume and the n-Dimensional Integral

3 Step Functions and Riemann Sums

4 Iterated Integrals and Fubini's Theorem

5 Change of Variables

6 Improper Integrals and Absolutely Integrable Functions

V Line and Surface Integrals; Differential Forms and Stokes' Theorem

1 Pathlength and Line Integrals

2 Green's Theorem

3 Multilinear Functions and the Area of a Parallelepiped

4 Surface Area

5 Differential Forms

6 Stokes' Theorem

7 The Classical Theorems of Vector Analysis

8 Closed and Exact Forms

VI The Calculus of Variations

1 Normed Vector Spaces and Uniform Convergence

2 Continuous Linear Mappings and Differentials

3 The Simplest Variational Problem

4 The Isoperimetric Problem

5 Multiple Integral Problems

Appendix: The Completeness of ℛ

Suggested Reading

Subject Index

- No. of pages: 470
- Language: English
- Edition: 1
- Published: January 1, 1973
- Imprint: Academic Press
- eBook ISBN: 9781483268057

Read *Advanced Calculus of Several Variables* on ScienceDirect