Journals in Condensed matter electronic structure electrical magnetic and optical properties
Journals in Condensed matter electronic structure electrical magnetic and optical properties
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
NIM-B accepts original manuscripts on the fundamental interactions between energetic particle beams and matter, along with related technologies and applications.Relevan... manuscripts will address one or more of the following areas:Interactions between matter and beams of charged or neutral particles: Atoms, molecules, atomic clusters, neutrons, photons, electrons, and ions.Experimental, theoretical and modelling work concerning fundamental interaction cross sections and derived information such as stopping powers, defect formation, thermodynamics and kinetics data.Beam-enhanced synthesis and modification of classical and quantum materials as well as surfaces treated with laser-, electron- and high intensity ion beams. This includes radiation-induced amorphization, crystallization, and other microstructural developments resulting from defect production and annealing, controlled modification of physical and chemical properties by ion implantation, micro and nano-structuring of surfaces as well as creation of structures far from thermal equilibrium, such as supersaturated solid solutions and ion tracks.The behaviour of materials subjected to ionising radiation of all kinds as well as the stability of materials exposed to various high radiation environments, including space, fission and fusion reactors, together with basic studies of initial defect generation, defect diffusion and annihilation, phase transformations, atomic clustering and bubble formation, and radiation damage in general.The fundamental physics and technical development of materials analysis using energetic beams - including all forms of ion beam analysis, accelerator mass spectrometry, positron annihilation spectroscopy, neutron scattering and diffraction, as well as synchrotron-based methods.Applications show-casing analytical capabilities or introducing novel possibilities across the whole range from analysis of biological tissues, materials of relevance to earth and planetary sciences, environmental science, materials science, cultural heritage materials, and thin films.Developments in ion beam instrumentation such as sources, optics, small accelerators, charged particle, neutron, X-ray and gamma-ray detectors, data acquisition, simulations, and computer programs enabling new capabilities relevant to the scientific scope of the journal.If this journal seems like a good fit for your research, you can find more information on submission in the Guide for Authors Guide for Authors.Special issues publication: The journal NIM-B offers interested parties the option of publication in topical special issues (including selected works from conferences). For more information please contact our special content specialist or the relevant editor.If you require any further information or help, please visit our Support Center.- ISSN: 0168-583X

Computational Materials Science
The aim of the journal is to publish papers that advance the field of computational materials science through the application of modern computational methods alone or in conjunction with experimental techniques to discover new materials and investigate existing inorganic materials, such as metals, ceramics, composites, semiconductors, nanostructures, 2D materials, metamaterials, and organic materials, such as polymers, liquid crystals, surfactants, emulsions, and also hybrid materials combining both inorganic and organic components such as polymer nanocomposites, nanocrystal superlattices or surfactant nanoparticle mixtures.Papers that report on the development of new methods, enhancement of existing approaches or significant technical computational advances are of interest.Papers with a focus on simulations must contain new conceptual or computational advances. For example, molecular dynamics using standard force fields, ordinary techniques and reporting conventional average quantities will be rejected without review. Validation of non-first-principles methods and transferability of methods must be included as part of each submission. In-depth discussion of impact, physical properties, and motivation for the system under study is strongly recommended.Studies including experimental data are of interest, but they must address a relevant theoretical/computat... question. Papers that are deemed to be primarily experimental with some supporting theory will be returned without review.Data-driven techniques in materials research, including machine-learning enhanced simulations and materials informatics, have emerged as powerful techniques to complement traditional computational materials science. Consistent with established best practices in across data-driven science, it is important that studies proposing or applying data-driven techniques provide data and code that adhere to FAIR data principles- Findable, Accessible, Interoperable, and Reusable. FAIR data access also ensures a robust peer review process where results can be reproduced by referees. Papers that are deemed to be primarily methodological but do not provide FAIR data and code will be returned without review. In a few rare cases, some limitations may prevent the complete public sharing of code and data; for instance, when the data or code is subject to copyright or intellectual property. However, these cases should be rare and considered on a case-by-case basis. The scope of the journal includes:obtaining new or enhanced insights into material behavior, properties and phenomena,predicting structure-property relationships for new materials in conjunction with data informatics,novel capabilities of computational methods and algorithms, technical software and shareware, or cyberinfrastructures... are accepted in the form of critical reviews, articles, letters and perspectives. Occasional special issues will be organized around a particular theme and some of these will be guest edited.Not all topics that potentially fall under the category of computational materials science will be considered; to find out more please visit the Guide for Authors.Guide for Authors:Research articles will be assessed based on originality, uniqueness and scientific merit. Manuscripts with significant overlap with existing reported works are likely to be inadmissible.To be considered for publication in Computational Materials Science studies proposing or applying data-driven techniques must exhibit a high degree of novelty in application and interpretation, in addition to providing FAIR-compatible data and code to support their analysis. the data and code used to generate your models are not available. This is achievable in different ways, not limited to posting code on a publicly available GitHub repository and/or data on Zenodo, including the code and data as attachments to the manuscript, or as a docker container.Not all topics that potentially fall under the category of computational materials science will be considered. Submissions that emphasize small molecules or clusters, focus on the design of components for structural applications, describe performance of an electronic device, or characterize thermal or mass transport without extensive accompanying input and associated discussion from computational materials science methods are best suited for other specialized journals. Additionally, papers that focus on continuum mechanical responses of broad classes of materials are likely better suited for journals that specialize in the mechanics of materials. Papers on biomolecules, drugs, bone, or medical applications will not be considered. In addition, papers on materials such as asphalt, cement, concrete, and related materials will be rejected without review.- ISSN: 0927-0256

Physica E: Low-Dimensional Systems and Nanostructures
Physica E: Low-dimensional systems and Nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.Both theoretical and experimental contributions are invited. The journal publishes articles on spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.The journal publishes topics including: topological insulators/supercond... majorana fermions, Wyel semimetals;quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;layered superconductivity, low dimensional systems with superconducting proximity effect;2D materials such as transition metal dichalcogenides;oxid... heterostructures including ZnO, SrTiO3 etc;carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)quantum wells and superlattices;quantu... Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;optical- and phonons-related phenomena;magnetic-s... structures;charge/sp... magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;ultra-fast nonlinear optical phenomena;novel devices and applications (such as high performance sensor, solar cell, etc);novel growth and fabrication techniques for nanostructuresNote Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.- ISSN: 1386-9477

Journal of Magnetism and Magnetic Materials
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcomed, including Critical Focused issues, Current Perspectives, and Outreach to the General Public.Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechan... Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.Other Categories: Critical Focused Issues - consist of single articles on emerging topics of interest. Articles in this category identify problems of current interest that need to be addressed in the future in order to advance an emerging subfield of magnetism. By identifying such open issues, they focus the interest of the community to the challenges ahead. Thus, unlike review articles, this category will aim more on the future and what needs to be explored, rather than on what has been explored in the past. Of course, the articles include a review aspect in order to identify the open issues and put them into perspective. The articles need not be long, exhaustive or comprehensive. They provide the vision of the authors, who are recognized experts in the field. Readers utilize these articles to focus their thinking on future endeavors. These articles should also help to generate proposals to funding agencies worldwide. Current Perspectives - Current Perspectives consists of clusters of articles on emerging topics of interest. The articles have guest editors who formulate and manage the intellectual scope of the project. A cluster is composed of authors who represent their own perspective and who possess diverse opinions on facets of the topic. A cluster, in its totality, provides a balanced point of view, while each individual article is free to be discriminating. The articles within a cluster have invited status, the articles are typically of short-to-medium length, and the reference lists must be adequate but not necessarily extensive. The clusters are expected to focus not only on what is known, but also on what the open questions are that need to be addressed in the future. The articles should be written at a level that inspires the next generation of graduate students. The guest editors typically provide an overview article to tie the cluster together thematically. Outreach to the General Public - These are articles of a general nature that highlight the importance of magnetism and stimulate the interest of the public at large. A heightened awareness of magnetism is healthy for our field. Experts who have given public lectures will be encouraged to submit their work in order for them to reach a larger community. It will also help our readers in their own communications with the public. These articles need not be long, exhaustive or comprehensive. They provide the vision of the authors. Providing the public with the importance of magnetism and magnetic materials at a level that can be understood and appreciated will be a public service. It will also inspire a new generation of students, have a positive influence on science policy, and strengthen the case of our community in the eyes of funding agencies worldwide.Benefits to authorsPlease see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.AUDIENCE. Condensed matter physicists, materials scientists, chemists, engineers, biologist and other interdisciplinary researchers.- ISSN: 0304-8853

Infrared Physics & Technology
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. The very near infrared, VNIR, defined as 750nm-1200nm is subject to special consideration.Where a submission utilises the VNIR alone, or in conjunction with longer wavelengths and uses typically `infrared? technology such as InGaAs detectors, it is in scope.Where a submission utilises the VNIR and shorter wavelengths in the visible, and uses typically visible region technology such as silicon detectors, it is unlikely to be appropriate to this Journal. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.A fuller though not exhaustive list of topics would include: Astronomy, Astrophysics and Space ResearchAtmospheric transmission, turbulence and scatteringBiomedical and Medical applicationsCultural heritageEnvironmenta... applications: pollution and monitoringDetectors: quantum and thermalImage processingIndustrial applicationsInfrared lasers including free electron lasersMaterial properties, processing and characterizationNon-... testing, active and passive.• Optical elements: lenses, polarizers, filters, mirrors, fibres, etc.Radiometry: techniques, calibration, standards and instrumentationRemot... sensing and range-findingSolid-s... physicsThermal imaging: device design, testing and applicationsSynchrot... radiation in the infraredDuring submission, please suggest at least one and a maximum of five potential reviewers. You are strongly encouraged to submit recommendations for appropriately senior and knowledgeable referees having no connection to your work and not located at your institution, as this may speed up the processing of your manuscript. The editorial office may not use your suggestions, but they are greatly appreciated. Where the author works in a country with a small community of research workers in his or her field, it is highly desirable that at least two of the suggested referees are from another country.To be suitable for submission to this Journal, manuscripts should advance the field of Infrared Physics and Technology. Their target audience should be those working in the field of Infrared Physics and Technology. Papers using infrared methods, such as FTIR spectroscopy or thermography, in an essentially routine way to advance some other field, and of interest to other readerships, and generally not suited to this Journal.The Journal does include within its scope genuinely new applications of established infrared methods. In the field of medical applications such as the detection of breast cancer or diabetic pathology, submissions to IRPT should normally include advances in hardware or data collection protocols etc. Such studies are required to have adequate sized and well characterized cohorts. Clinical studies using standard equipment are generally not within the scope of the Journal. Similarly in the fields of hyperspectral imaging and near infrared (NIR) spectroscopy application of standard hardware and signal processing methods to a different agricultural product etc does not normally fall within our scope, whereas novel hardware or signal processing does.The Journal only publishes papers which are purely based on computer modelling without support from experimental results in exceptional circumstances when there is a clear reason to do so. These might, for example, include comparative studies of designs for large pieces of equipment such as satellites, FELs etc.Papers on advances in modelling techniques, appropriately validated, are welcome.- ISSN: 1350-4495

Acta Materialia
Published on behalf of Acta Materialia, Inc.Acta Materialia provides a forum for publishing full-length, original papers and commissioned overviews, and feature articles that advance the understanding of the relationship between the processing, the structure and the properties of inorganic materials. Acta Materialia prioritizes papers that significantly move the field forward, advancing the thinking in the field and providing mechanistic processing-structure... connections. Explorations of such connections by experiment, computation, theory, data science, and machine learning are all welcome; studies that connect across theory, computation, and experiment through mechanistic means are especially relevant.Materials structure at all scales is of interest, from electronic, atomic, and molecular arrangements to microstructural elements, including crystal defects, polycrystalline and polyphase structures, and spanning to macrostructures formed by processing that impact properties and performance. The connection of these structural features to all kinds of properties is of interest, including mechanical and functional properties, thermodynamics and kinetics, phase transformations, etc.Short communications and comments to papers published in Acta Materialia may be submitted to Scripta Materialia.Manuscrip... about materials that fall outside the scope of Acta Materialia or Scripta Materialia may be submitted to Materialia, which is part of the Acta Materialia family of journals.- ISSN: 1359-6454

Scripta Materialia
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The scope and aims of Scripta Materialia are identical to Acta MaterialiaScripta Materialia prioritizes papers that significantly move the field forward, advancing the thinking in the field and providing mechanistic processing-structure... connections. Explorations of such connections by experiment, computation, theory, data science, and machine learning are all welcome; studies that connect across theory, computation, and experiment through mechanistic means are especially relevant. Materials structure at all scales is of interest, from electronic, atomic, and molecular arrangements to microstructural elements, including crystal defects, polycrystalline and polyphase structures, and spanning to macrostructures formed by processing that impact properties and performance. The connection of these structural features to all kinds of properties is of interest, including mechanical and functional properties, thermodynamics and kinetics, phase transformations, etc. In addition to original contributions, Scripta Materialia p... comments on papers published in Acta Materialia and Scripta Materialia. The journal also publishes Viewpoints, which are invited short articles focused on topics of current interest within the scope of the journal and coordinated by invited guest editors.- ISSN: 1359-6462

Microelectronics Reliability
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. All contributions are subject to peer review by leading experts in the field. Special issues are devoted to significant international conferences, or to important developing topics.Microelectron... Reliability is an indispensable forum for the exchange of knowledge and experience between microelectronics reliability professionals from both academic and industrial environments, and all those associated in any way with a steadily growing microelectronics industry and its many fields of application.- ISSN: 0026-2714

Solid-State Electronics
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design with appropriate experimental backup; (2) optical, electrical, morphological characterization techniques and parameter extraction with experimental application to real devices; (3) device fabrication and synthesis, including device-related new materials growth, electro-optical characterization and performance evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) modeling and simulation of solid-state devices and processes with appropriate experimental backup; (6) nanoscale electronic and optoelectronic devices for various applications, including photovoltaics, sensing, micro- and nano-mechanical (MEMS/NEMS) systems, quantum computation and communication.Import... Given the wide availability of TCAD simulation packages (Synopsys, Silvaco, etc.) device simulation papers should be coupled with experiment, revolutionary concepts or novel analytical approaches. Pure simulation papers are not considered. Papers on materials growth and characterization should be relevant to a current or future device technology.Types of contributions: Original research papers, letters (intended for high-impact and high-quality short papers) and invited review papers (please contact the editors prior to submission). Solid-State Electronics does not publish notes or brief communications.Keywo... solid state electronics, field effect transistor, semiconductor (Si, SOI, Ge, III-V, 2D, etc.), nano-devices, new device concepts, fabrication, characterization, modeling, memories, high-voltage devices, photovoltaics, MEMS/NEMS- ISSN: 0038-1101

Surface Science
Including Surface Science Letters A journal devoted to the physics and chemistry of fnterfaces, Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditionsnanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomenareactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalizationphe... at interfaces relevant to energy storage and conversion, and fuels production and utilizationsurface reactivity for environmental protection and pollution remediationinteracti... at surfaces of soft matter, including polymers and biomaterialslow dimensional materials- ISSN: 0039-6028
