Elements of Numerical Mathematical Economics with Excel: Static and Dynamic Optimization shows readers how to apply static and dynamic optimization theory in an easy and practical manner, without requiring the mastery of specific programming languages that are often difficult and expensive to learn. Featuring user-friendly numerical discrete calculations developed within the Excel worksheets, the book includes key examples and economic applications solved step-by-step and then replicated in Excel. After introducing the fundamental tools of mathematical economics, the book explores the classical static optimization theory of linear and nonlinear programming, applying the core concepts of microeconomics and some portfolio theory. This provides a background for the more challenging worksheet applications of the dynamic optimization theory. The book also covers special complementary topics such as inventory modelling, data analysis for business and economics, and the essential elements of Monte Carlo analysis. Practical and accessible, Elements of Numerical Mathematical Economics with Excel: Static and Dynamic Optimization increases the computing power of economists worldwide. This book is accompanied by a companion website that includes Excel examples presented in the book, exercises, and other supplementary materials that will further assist in understanding this useful framework.
Handbook of Computational Economics: Heterogeneous Agent Modeling, Volume Four, focuses on heterogeneous agent models, emphasizing recent advances in macroeconomics (including DSGE), finance, empirical validation and experiments, networks and related applications. Capturing the advances made since the publication of Volume Two (Tesfatsion & Judd, 2006), it provides high-level literature with sections devoted to Macroeconomics, Finance, Empirical Validation and Experiments, Networks, and other applications, including Innovation Diffusion in Heterogeneous Populations, Market Design and Electricity Markets, and a final section on Perspectives on Heterogeneity.
Principles of Financial Engineering, Third Edition, is a highly acclaimed text on the fast-paced and complex subject of financial engineering. This updated edition describes the "engineering" elements of financial engineering instead of the mathematics underlying it. It shows how to use financial tools to accomplish a goal rather than describing the tools themselves. It lays emphasis on the engineering aspects of derivatives (how to create them) rather than their pricing (how they act) in relation to other instruments, the financial markets, and financial market practices. This volume explains ways to create financial tools and how the tools work together to achieve specific goals. Applications are illustrated using real-world examples. It presents three new chapters on financial engineering in topics ranging from commodity markets to financial engineering applications in hedge fund strategies, correlation swaps, structural models of default, capital structure arbitrage, contingent convertibles, and how to incorporate counterparty risk into derivatives pricing. Poised midway between intuition, actual events, and financial mathematics, this book can be used to solve problems in risk management, taxation, regulation, and above all, pricing. A solutions manual enhances the text by presenting additional cases and solutions to exercises. This latest edition of Principles of Financial Engineering is ideal for financial engineers, quantitative analysts in banks and investment houses, and other financial industry professionals. It is also highly recommended to graduate students in financial engineering and financial mathematics programs.
Advanced Textbooks in Economics, Volume 1: Variational Methods in Economics focuses on the application of variational methods in economics, including autonomous system, dynamic programming, and phase spaces and diagrams. The manuscript first elaborates on growth models in economics and calculus of variations. Discussions focus on connection with dynamic programming, variable end points-free boundaries, transversality at infinity, sensitivity analysis-end point changes, Weierstrass and Legendre necessary conditions, and phase diagrams and phase spaces. The text then ponders on the constraints of classical theory, including unbounded intervals of integration, free boundary conditions, comparison functions, normality, and the problem of Bolza. The publication explains two-sector models of optimal economic growth, optimal control theory, and connections with the classical theory. Topics include capital good immobile between industries, constrained state variables, linear control problems, conversion of a control problem into a problem of Lagrange, and the conversion of a nonautonomous system into an autonomous system. The book is a valuable source of information for economists and researchers interested in the variational methods in economics.
The Microeconomics of Complex Economies uses game theory, modeling approaches, formal techniques, and computer simulations to teach useful, accessible approaches to real modern economies. It covers topics of information and innovation, including national and regional systems of innovation; clustered and networked firms; and open-source/open-innovation production and use. Its final chapter on policy perspectives and decisions confirms the value of the toolset. Written so chapters can be used independently, the book includes an introduction to computer simulation and pedagogical supplements. Its formal, accessible treatment of complexity goes beyond the scopes of neoclassical and mainstream economics. The highly interdependent economy of the 21st century demands a reconsideration of economic theories.