Skip to main content

Books in Condensed matter structure thermal and mechanical properties

11-20 of 49 results in All results

Statistical Thermodynamics of Semiconductor Alloys

  • 1st Edition
  • October 23, 2015
  • Vyacheslav A Elyukhin
  • English
  • Paperback
    9 7 8 - 0 - 1 2 - 8 0 3 9 8 7 - 8
  • eBook
    9 7 8 - 0 - 1 2 - 8 0 3 9 9 3 - 9
Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations of crystal structure, and description of the order-disorder transitions. Semiconductor alloys, including doped elemental semiconductors are the basic materials of solid-state electronics. Their structural stability and other characteristics are key to determining the reliability and lifetime of devices, making the investigation of stability conditions an important part of semiconductor physics, materials science, and engineering. This book is a guide to predicting and studying the thermodynamic properties and characteristics of the basic materials of solid-state electronics.

Acoustic, Thermal Wave and Optical Characterization of Materials

  • 1st Edition
  • Volume 11
  • November 14, 2012
  • G.M. Crean + 2 more
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 5 9 6 6 4 - 2
This volume focuses on a variety of novel non-destructive techniques for the characterization of materials, processes and devices. Emphasis is placed on probe-specimen interactions, in-situ diagnosis, instrumentation developments and future trends. This was the first time a symposium on this topic had been held, making the response particularly gratifying. The high quality of the contributions are a clear indication that non-destructive materials characterization is becoming a dynamic research area in Europe at the present time.A selection of contents: The role of acoustic properties in designs of acoustic and optical fibers (C.K. Jen). Observation of stable crack growth in Al2O3 ceramics using a scanning acoustic microscope (A. Quinten, W. Arnold). Mechanical characterization by acoustic techniques of SIC chemical vapour deposited thin films (J.M. Saurel et al.). Efficient generation of acoustic pressure waves by short laser pulses (S. Fassbender et al.). Use of scanning electron acoustic microscopy for the analysis of III-V compound devices (J.F. Bresse). Waves and vibrations in periodic piezoelectric composite materials (B.A. Auld). Precision ultrasonic velocity measurements for the study of the low temperature acoustic properties in defective materials (A. Vanelstraete, C. Laermans). Thermally induced concentration wave imaging (P. Korpiun et al.). Interferometric measurement of thermal expansion (V. Kurzmann et al.). Quantitative analyses of power loss mechanisms in semiconductor devices by thermal wave calorimetry (B. Büchner et al.). Thermal wave probing of the optical electronic and thermal properties of semiconductors (D. Fournier, A. Boccara). Thermal wave measurements in ion-implanted silicon (G. Queirola et al.). Optical-thermal non-destructive examination of surface coatings (R.E. Imhof et al.). Bonding analysis of layered materials by photothermal radiometry (M. Heuret et al.). Thermal non-linearities of semiconductor-doped glasses in the near-IR region (M. Bertolotti et al.). Theory of picosecond transient reflectance measurement of thermal and eisatic properties of thin metal films (Z. Bozóki et al.). The theory and application of contactless microwave lifetime measurement (T. Otaredian et al.). Ballistic phonon signal for imaging crystal properties (R.P. Huebener et al.). Determination of the elastic constants of a polymeric Langmuir-Blodgett film by Briliouin spectroscopy (F. Nizzoli et al.). Quantum interference effects in the optical second-harmonic response tensor of a metal surface (O. Keller). Study of bulk and surface phonons and plasmons in GaAs/A1As superlattices by far-IR and Raman spectroscopy (T. Dumslow et al.). Far-IR spectroscopy of bulk and surface phonon-polaritons on epitaxial layers of CdTe deposited by plasma MOCVD on GaAs substrates (T. Dumelow et al.). In-situ characterization by reflectance difference spectroscopy of III-V materials and heterojunctions grown by low pressure metal organic chemical vapour deposition (O. Acher et al.). Optical evidence of precipitates in arsenic-implanted silicon (A. Borghesi et al.). Polarized IR reflectivity of CdGeAs2 (L. Artús et al.). Raman and IR spectroscopies: a useful combination to study semiconductor interfaces (D.R.T. Zahn et al.). Silicon implantation of GaAs at low and medium doses: Raman assessment of the dopant activation (S. Zakang et al.). Ellipsometric characterization of thin films and superlattices (J. Bremer et al.). Ellipsometric characterization of multilayer transistor structures (J.A. Woollam et al.). Quality of molecular-beam-epitaxy-grown GaAs on Si(100) studied by ellipsometry (U. Rossow et al.). An ellipsometric and RBS study of TiSi2 formation (J.M.M. de Nijs, A. van Silfhout). A new microscope for semiconductor luminescence studies (P.S. Aplin, J.C. Day). Structural analysis of optical fibre preforms fabricated by the sol-gel process (A.M. Elas et al.). Author index.

Statistical Models for the Fracture of Disordered Media

  • 1st Edition
  • June 28, 2014
  • H.J. Herrmann + 1 more
  • English
  • eBook
    9 7 8 - 1 - 4 8 3 2 - 9 6 1 2 - 8
Since the beginning of the century the technological desire to master the fracture of metals, concrete or polymers has boosted research and has left behind an overwhelming amount of literature. In a field where it seems difficult to say anything simple and new, the editors and authors of this book have managed to do just that.The approach to fracture taken here was not conceived by mechanical engineers or material scientists. It is essentially the by-product of exciting developments that have occurred in the last ten to fifteen years within a branch of theoretical physics, called statistical physics. Concepts such as ``percolation'' and ``fractals'', as models for the properties of fracture are not often considered by engineers. A particular aim of this volume is to emphasize the fundamental role disorder plays in the breaking process.The main scope of the volume is pedagogical and is at the same time an overview of fracture mechanics for physicists and an introduction to new concepts of statistical physics for mechanics and engineers. To this end the first half of the book consists of introductory chapters and the second half contains the results that have emerged from this new approach.

Topological Insulators

  • 1st Edition
  • Volume 6
  • November 15, 2013
  • Marcel Franz + 1 more
  • English
  • Hardback
    9 7 8 - 0 - 4 4 4 - 6 3 3 1 4 - 9
  • eBook
    9 7 8 - 0 - 4 4 4 - 6 3 3 1 8 - 7
Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was thought that all band insulators are essentially equivalent, the new theory predicts two distinct classes of band insulators in two spatial dimensions and 16 classes in three dimensions. These "topological" insulators exhibit a host of unusual physical properties, including topologically protected gapless surface states and exotic electromagnetic response, previously thought impossible in such systems. Within a short time, this new state of quantum matter, topological insulators, has been discovered experimentally both in 2D thin film structures and in 3D crystals and alloys. It appears that topological insulators are quite common in nature, and there are dozens of confirmed substances that exhibit this behavior. Theoretical and experimental studies of these materials are ongoing with the goal of attaining the fundamental understanding and exploiting them in future practical applications.

The Structures of Binary Compounds

  • 1st Edition
  • Volume 2
  • October 22, 2013
  • J. Hafner + 6 more
  • F.R. de Boer
  • English
  • eBook
    9 7 8 - 1 - 4 8 3 2 - 9 0 7 6 - 8
- Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in understanding the quantum mechanical origin of structural stability presented in two clearly-written chapters by leading experts in the field: Hafner, Majewski and Vogl. ``The Structures of Binary Compounds'' presents not only the most up-to-date compilation of the experimental data on the structures of binary compounds, but also the recent important theoretical advances in understanding the quantum-mechanical origin of structural stability. In addition to this volume, a large wall chart displaying the structure maps for the AB, ABs and AB3 stoichiometries together with the corresponding co-ordination polyhedra, has been published.The first half of the book details the successful ordering of the known experimental data in two- or three-dimensional coloured structure maps, the 150 most frequently occurring structure types being characterized for the first time by their local co-ordination polyhedra. The second half of the book details the success of first-principle theoretical calculations within the Local Density Functional Approximation in predicting the correct ground state structures of binary semiconductors, insulators and metals. The book concludes with a chapter on the cohesion and structure of solids from the more localized tight-binding point of view.

Shock Waves in Condensed Matter - 1983

  • 1st Edition
  • December 2, 2012
  • J.R. Asay + 2 more
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 6 0 0 1 7 - 2
Shock Waves in Condensed Matter – 1983 covers the proceedings of the American Physical Society Topical Conference, held in Santa Fe, New Mexico on July 18-21, 1983. The book focuses on the response of matter to dynamic high pressure and temperature. The selection first elaborates on the review of theoretical calculations of phase transitions and comparisons with experimental results; theoretical and experimental studies of shock-compressed benzene and polybutene; and theory of the iron equation of state and melting curve to very high pressures. The text then ponders on nonhydrostatic effects in stress-wave induced phase transformation of calcite; Bauschinger effect model suitable for use in large computer codes; and strain rate sensitivity prediction for porous bed compaction. The manuscript takes a look at flaw nucleation and energetics of dynamic fragmentation, shock loading behavior of fused quartz, and aluminum damage simulation in high-velocity impact. Shock wave diagnostics by time-resolved infrared radiometry and non-linear Raman spectroscopy; Raman scattering temperature measurement behind a shock wave; and experiments and simulation on laser-driven shock wave evolution in aluminum targets are also discussed. The selection is a dependable reference for scientists and readers interested in the response of matter when exposed to dynamic high pressure and temperature.

Physics of Radiation Effects in Crystals

  • 1st Edition
  • Volume 13
  • December 2, 2012
  • R.A. Johnson + 1 more
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 5 9 8 2 2 - 6
``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor materials, and radiation damage of semiconductors and superconductors.

Incommensurate Phases in Dielectrics

  • 1st Edition
  • Volume 14
  • December 2, 2012
  • R. Blinc + 1 more
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 5 9 8 3 1 - 8
Modern Problems in Condensed Matter Sciences, Volume 14.2: Incommensurate Phases in Dielectrics, 2: Materials offers a physical picture of incommensurate insulators and gives readers an idea how experimental techniques can be used to study the dynamic and static properties of incommensurate systems on a microscopic level. The selection first offers information on the modulated phases in thiourea and incommensurate phase of quartz and barium sodium niobate (BSN). Discussions focus on the characteristics of the incommensurate phase in BSN, thermal hysteresis and relaxation effects, macroscopic symmetry breaking and related anomalies, properties of quartz and the discovery of the incommensurate phase, and dynamical properties. The text examines the incommensurate phases in an aromatic molecular crystal, including symmetry properties, molecular nature of the structural instability, satellite reflections, and excitations in incommensurate phases. The publication ponders on the incommensurate structures in liquid crystals, as well as liquid crystals and effects of incommensurability; incommensurate structures in cholesterol and sematic liquid crystals induced by external fields; incommensurate flex electric structure in hematic liquid crystals; and incommensurate sematic structures as polymorphous modifications. The selection is a vital reference for researchers interested in the incommensurate phases in dielectrics.

Optical Properties of Mixed Crystals

  • 1st Edition
  • Volume 23
  • December 2, 2012
  • R.J. Elliott + 1 more
  • English
  • eBook
    9 7 8 - 0 - 4 4 4 - 5 9 8 2 5 - 7
``Optical Properties of Mixed Crystals'' is concerned with the description of optical processes in substitutionally disordered semiconductors and insulators which can be basically described through their elementary excitations. Two of the chapters relate to the phonon response including the effect of side bands on electron transitions. Two relate to electronic spectra, one on photoelectron spectroscopy and the other on excitons. A further chapter deals with magnons in magnetic crystals and a final chapter is related to fluctuations and band edge effects.Each chapter deals with a specific class of excitation, but the book makes it clear that the fundamental structure of the excitation spectra, including band formation, band tailing and localisation is common to every type of excitation. The volume shows how some basic concepts and ideas can be widely applied to bring coherence and understanding to a diverse area of solid state physics. It therefore provides an up-to-date summary of the experimental and theoretical situation in an important and rapidly developing field and brings together for the first time a discussion of the many different types of spectra which appear in mixed crystals.