Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Viability, Invariance and Applications

    • 1st Edition
    • Volume 207
    • Ovidiu Carja + 2 more
    • English
    The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time.The book includes the most important necessary and sufficient conditions for viability starting with Nagumo’s Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In the latter (i.e. multi-valued) cases, the results (based on two completely new tangency concepts), all due to the authors, are original and extend significantly, in several directions, their well-known classical counterparts.
  • Numerical Methods for Roots of Polynomials - Part I

    • 1st Edition
    • Volume 14
    • J.M. McNamee
    • English
    Numerical Methods for Roots of Polynomials - Part I (along with volume 2 covers most of the traditional methods for polynomial root-finding such as Newton’s, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent’s method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled “A Handbook of Methods for Polynomial Root-finding”. This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic.
  • Advances in Computers

    Architectural Advances
    • 1st Edition
    • Volume 69
    • Marvin Zelkowitz
    • English
    The series covers new developments in computer technology. Most chapters present an overview of a current subfield within computers, with many citations, and often include new developments in the field by the authors of the individual chapters. Topics include hardware, software, theoretical underpinnings of computing, and novel applications of computers. This current volume emphasizes architectural advances and includes five chapters on hardware development, games for mobile devices such as cell phones, and open source software development. The book series is a valuable addition to university courses that emphasize the topics under discussion in that particular volume as well as belonging on the bookshelf of industrial practitioners who need to implement many of the technologies that are described.
  • Handbook of Differential Equations: Stationary Partial Differential Equations

    • 1st Edition
    • Volume 4
    • Michel Chipot
    • English
    A collection of self contained state-of-the art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.
  • Residuated Lattices: An Algebraic Glimpse at Substructural Logics

    • 1st Edition
    • Volume 151
    • Nikolaos Galatos + 3 more
    • English
    The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.
  • Open Problems in Topology II

    • 1st Edition
    • Elliott M. Pearl
    • English
    This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.
  • Linear Algebra

    • 2nd Edition
    • Richard Bronson + 1 more
    • English
    In this appealing and well-written text, Richard Bronson gives readers a substructure for a firm understanding of the abstract concepts of linear algebra and its applications. The author starts with the concrete and computational, and leads the reader to a choice of major applications (Markov chains, least-squares approximation, and solution of differential equations using Jordan normal form). The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructor's taste and to the length of the course. Bronson's approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced. Key material is highlighted in the text and summarized at the end of each chapter. The book also includes ample exercises with answers and hints. With its inclusion of all the needed features, this text will be a pleasure for professionals, teachers, and students.
  • Computational Methods for Modeling of Nonlinear Systems by Anatoli Torokhti and Phil Howlett

    • 1st Edition
    • Volume 212
    • Anatoli Torokhti + 1 more
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression.
  • Introduction to Precise Numerical Methods

    • 2nd Edition
    • Oliver Aberth
    • English
    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented.
  • Table of Integrals, Series, and Products

    • 7th Edition
    • Daniel Zwillinger + 1 more
    • English
    The Table of Integrals, Series, and Products is the essential reference for integrals in the English language. Mathematicians, scientists, and engineers, rely on it when identifying and subsequently solving extremely complex problems. Since publication of the first English-language edition in 1965, it has been thoroughly revised and enlarged on a regular basis, with substantial additions and, where necessary, existing entries corrected or revised. The seventh edition includes a fully searchable CD-Rom.