Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer. Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, structure theory of Lie algebra, and representation theory. This book presents as well an historical survey of the use of computers in Lie algebra theory, with specific reference to computing the coupling and recoupling coefficients for the irreducible representations of simple Lie algebras. The final chapter deals with how representations of semi-simple Lie algebras can be symmetrized in a straightforward manner. This book is a valuable resource for mathematicians.
For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously.One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups.Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group rings is of immense interest.This is the first survey of the theory of alternative loop rings and related issues. Due to the strong interaction between loop rings and certain group rings, many results on group rings have been included, some of which are published for the first time. The authors often provide a new viewpoint and novel, elementary proofs in cases where results are already known.The authors assume only that the reader is familiar with basic ring-theoretic and group-theoretic concepts. They present a work which is very much self-contained. It is thus a valuable reference to the student as well as the research mathematician. An extensive bibliography of references which are either directly relevant to the text or which offer supplementary material of interest, are also included.