The eighth edition of the classic Gradshteyn and Ryzhik is an updated completely revised edition of what is acknowledged universally by mathematical and applied science users as the key reference work concerning the integrals and special functions. The book is valued by users of previous editions of the work both for its comprehensive coverage of integrals and special functions, and also for its accuracy and valuable updates. Since the first edition, published in 1965, the mathematical content of this book has significantly increased due to the addition of new material, though the size of the book has remained almost unchanged. The new 8th edition contains entirely new results and amendments to the auxiliary conditions that accompany integrals and wherever possible most entries contain valuable references to their source.
This book gives the reader a survey of hundreds results in the field of the cell and cell associated objects modeling. Applications to modeling in the areas of AIDS, cancers and life longevity are investigated in this book.
Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are: 1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions. 2. Full treatment of the theoretical foundations that are crucial for the analysis of wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory. 3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.
Building on previous texts in the Modular Mathematics series, in particular 'Vectors in Two or Three Dimensions' and 'Calculus and ODEs', this book introduces the student to the concept of vector calculus. It provides an overview of some of the key techniques as well as examining functions of more than one variable, including partial differentiation and multiple integration.Undergraduates who already have a basic understanding of calculus and vectors, will find this text provides tools with which to progress onto further studies; scientists who need an overview of higher order differential equations will find it a useful introduction and basic reference.
Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.