Handbook of MRI Pulse Sequences, Second Edition includes 92 self-contained sections, with each section focusing on a single subject. A new section on detailing the advanced pulse sequence techniques covers a variety of basic and advanced image reconstruction methods. The extensive topic coverage and cross-referencing makes this book ideal for beginners learning the building blocks of MRI pulse sequence design, as well as for experienced professionals who are seeking deeper knowledge of a particular technique.This book is among the most important medical imaging techniques available today. Each of these scanners is capable of running many different "pulse sequences." These sequences are governed by physics and engineering principles and implemented by software programs that control the MRI hardware.
Basic Biostatistics for Medical and Biomedical Practitioners, Second Edition makes it easier to plan experiments, with an emphasis on sample size. It also shows what choices are available when simple tests are unsuitable and offers investigators an overview of how the kinds of complex tests that they won't do on their own work. The second edition presents a new, revised and enhanced version of the chapters, taking into consideration new developments and tools available, discussing topics, such as the basic aspects of statistics, continuous distributions, hypothesis testing, discrete distributions, probability in epidemiology and medical diagnosis, comparing means, regression and correlation. This book is a valuable source for students and researchers looking to expand or refresh their understanding of statistics as it applies to the biomedical and research fields. Based on the author’s 40+ years of teaching statistics to medical fellows and biomedical researchers across a wide range of fields, it is a valuable source for researchers who need to understand more about biostatistics to apply it to their work.
New Approaches of Protein Function Prediction from Protein Interaction Networks contains the critical aspects of PPI network based protein function prediction, including semantically assessing the reliability of PPI data, measuring the functional similarity between proteins, dynamically selecting prediction domains, predicting functions, and establishing corresponding prediction frameworks. Functional annotation of proteins is vital to biological and clinical research and other applications due to the important roles proteins play in various biological processes. Although the functions of some proteins have been annotated via biological experiments, there are still many proteins whose functions are yet to be annotated due to the limitations of existing methods and the high cost of experiments. To overcome experimental limitations, this book helps users understand the computational approaches that have been rapidly developed for protein function prediction.
Mathematic Modelling: Improving the Implementation, Monitoring and Evaluation of Interventions, Part B, the latest volume in the Advances in Parasitology series contains comprehensive and up-to-date reviews in the field of mathematic modeling and its implementation within parasitology. The series includes medical studies of parasites of major influence, such as Plasmodium falciparum and trypanosomes, along with reviews of more traditional areas, such as zoology, taxonomy, and life history, all of which shape current thinking and applications.
Biostatistics for Practitioners: An Interpretative Guide for Medicine and Biology deals with several aspects of statistics that are indispensable for researchers and students across the biomedical sciences. The book features a step-by-step approach, focusing on standard statistical tests, as well as discussions of the most common errors. The book is based on the author’s 40+ years of teaching statistics to medical fellows and biomedical researchers across a wide range of fields.
First published in 1963, Advances in Parasitology contains comprehensive and up-to-date reviews in all areas of interest in contemporary parasitology. Advances in Parasitology includes medical studies of parasites of major influence, such as Plasmodium falciparum and trypanosomes. The series also contains reviews of more traditional areas, such as zoology, taxonomy, and life history, which shape current thinking and applications. The 2013 impact factor is 4.36.
Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software.
Essential Statistical Methods for Medical Statistics presents only key contributions which have been selected from the volume in the Handbook of Statistics: Medical Statistics, Volume 27 (2009). While the use of statistics in these fields has a long and rich history, the explosive growth of science in general, and of clinical and epidemiological sciences in particular, has led to the development of new methods and innovative adaptations of standard methods. This volume is appropriately focused for individuals working in these fields. Contributors are internationally renowned experts in their respective areas.
The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide a general progression from basic numerical methods to more specific biochemical and biomedical applications.
Statistical Bioinformatics provides a balanced treatment of statistical theory in the context of bioinformatics applications. Designed for a one or two semester senior undergraduate or graduate bioinformatics course, the text takes a broad view of the subject – not just gene expression and sequence analysis, but a careful balance of statistical theory in the context of bioinformatics applications. The inclusion of R & SAS code as well as the development of advanced methodology such as Bayesian and Markov models provides students with the important foundation needed to conduct bioinformatics.