SUSTAINABLE DEVELOPMENT
Innovate. Sustain. Transform.
Save up to 30% on top Physical Sciences & Engineering titles!

Water Gas Shift Reaction: Research Developments and Applications outlines the importance of hydrogen as a future fuel, along with the various hydrogen production methods.… Read more
SUSTAINABLE DEVELOPMENT
Save up to 30% on top Physical Sciences & Engineering titles!
Water Gas Shift Reaction: Research Developments and Applications
outlines the importance of hydrogen as a future fuel, along with the various hydrogen production methods. The book explains the development of catalysts for Water Gas Shift (WGS) reaction at different temperatures and steam/CO ratios, and also discussing the effect of different dopants on the WGS activity of iron oxide and the promotion and inhibition roles of the dopants on the WGS activity of iron oxide are explained.In addition, the book describes extensive characterization of modified ferrite catalysts, especially with Mossbauer spectroscopy and its advantage in understanding properties of metal doped ferrite catalysts, the exact dopant location, and its effect on electron hopping capability and WGS activity of Fe redox couple.
Chemical Engineers, Chemists, Industrialists, Analytical Chemists, Scientists/Engineers working on energy, Catalysts Manufacturers, Material science engineers
PS
Prof. Smirniotis group has been developing modified ferrite catalysts for the high temperature water gas shift (WGS) reaction for the last 7 years. We have published 12 papers in this area in highly prestigious journals like Journal of Catalysis, Journal of Physical Chemistry C, Journal of Membrane Science, and Applied Catalysis A: General etc. Our group is the first one to develop modified ferrite catalysts for ultra high temperature membrane reactor WGS applications. Our group is the first one to explain the negative effect of Cu observed in the water gas shift reaction. We explained this negative effect of Cu by using several techniques.
So far, there are several books available for development of shift catalysts. However, in recent years researchers from around the globe made so many variations and approaches to conduct high temperature WGS reaction like membrane reactors, homogeneous WGS reaction, non-ferrite catalysts. We want to publish all these novel findings and carry comparisons with the existing literature in the form of a book.
KG