LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Waste-derived Nanoparticles: Synthesis, Applications, and Sustainability embarks on an illuminating exploration at the intersection of waste management and nanotechn… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Waste-derived Nanoparticles: Synthesis, Applications, and Sustainability embarks on an illuminating exploration at the intersection of waste management and nanotechnology. Delving deep into the realm of nanoparticle synthesis, this comprehensive volume meticulously examines various waste sources, ranging from industrial residues to electronic waste, uncovering their potential for sustainable innovation. Through detailed discussions on synthesis methodologies and characterization techniques, each chapter offers insights into the intricate processes involved in transforming waste materials into functional nanoparticles.
Beyond synthesis, the book ventures into the diverse applications of waste-derived nanoparticles, offering transformative solutions to pressing environmental challenges. From revolutionizing wastewater treatment to combating air pollution and advancing energy technologies, these applications hold promise for a greener future. With a forward-looking perspective, this book envisions a shift toward a circular economy, where waste materials are not only repurposed but also contribute to a more sustainable and environmentally conscious world. This book serves as a beacon, guiding us toward a future where waste becomes a valuable resource in our quest for a cleaner and healthier planet.
Researchers, scientists, engineers, professors, students, and professionals interested in environmental science, environmental engineering, materials science, nanotechnology, chemical engineering, waste management, energy and chemistry
JA
Dr. Jeenat Aslam is currently working as an Associate Professor in the Department of Chemistry at the College of Science, Taibah University, Yanbu, Al-Madina, Saudi Arabia. She obtained her PhD degree in chemistry from Aligarh Muslim University, Aligarh, India. Her research is mainly focused on materials and corrosion, nanotechnology, and surface chemistry. Dr. Jeenat has published several research and review articles in peer-reviewed international journals. In addition, she has authored more than 40 book chapters and edited more than 30 books for different prestigious publishers.
RA
Dr. Ruby Aslam is a Postdoctoral Fellow in the School of Civil Engineering and Architecture at Chongqing University of Science and Technology, Chongqing, China. She received her MSc, MPhil, and PhD degrees from Aligarh Muslim University, India. Her main areas of interest in research include the development of stimuli-responsive smart coatings for corrosion detection and protection as well as the assessment of environment-friendly corrosion inhibitors. She has authored/coauthored several research articles in international peer-reviewed journals, including critical reviews and book chapters. She has edited more than 10 books.
CM