Pyridoxine, Pyridoxamine, Pyridoxal: Analogs and Derivatives:
H. Tsuge, Determination of Vitamin B 6 Vitamers and Metabolites in Biological Sample.
H.J. Mascher, High-Performance Liquid Chromatography Determination of Total Pyridoxal in Human Plasma.
J.D. Mahuren and S.P. Coburn, Determination of 5-Pyridoxic Acid, 5-Pyridoxic Acid Lactone, and other Vitamin B6 Compounds by Cation-Exchange High-Performance Liquid Chromatography.
D.E. Metzler, Nuclear Magnetic Resonance in Study of Active Sites of Pyridoxal-Dependent Enzymes.
T. Fukui and K. Tanizawa, Synthesis and Application of Pyridoxal Polyphosphoryl Derivatives as Active-Site Probes for Nucleotide-Binding Enzymes.
S. Stein and T. Zhu, Preparation of Vitamin B6-Peptide and Vitamin B6-Peptide-Oligonucleotide Conjugates.
J.F. Gregory III and H. Nakano, Preparation of Nonlabeled, Tritiated, and Deuterated Pyridoxine 5-beta-D-Glucoside and Assay of Pyridoxine-5-beta-D-Glucoside Hydrolase.
Y. Suzuki, Y. Doi, K. Uchida, and H. Tsuge, Enzymatic Preparation of Pyridoxine 4- and 5-alpha-D-Glucosides.
Y. Suzuki and K. Uchida, Formation of Beta-Galactosides of Pyridoxine using Sporobolomyces singularis.
Carbonyl Coenzymes: Pyruvyl Enzymes and Quinoproteins:
W. Dowhan, Phosphatidylserine Decarboxylases: Pyruvoyl-Dependent Enzymes from Bacteria to Mammals.
M. Misset-Smits, A.J.J. Olshoorn, A. Dewanti, and J.A. Duine, Production, Assay, and Occurrence of Pyrroloquinoline Quinone.
C. Hartmann and W.S. McIntire, Amine-Oxidizing Quinoproteins.
O. Suzuki and T. Kumazawa, Gas Chromatographic/Mass Spectrometric Analysis of Pyrroloquinoline Quinone.
H. Narita and E. Morishita, Monoclonal Antibodies Specific to Pyrroloquinoline Quinone.
Nicotinic Acid: Analogs and Coenzymes:
A. Klemm, T. Steiner, U. Flitgen, G.A. Cumme, and A. Horn, Determination, Purification, and Characterization of alpha-NADH and alpha-NADPH.
R.F. Colman, Affinity Labels for NaD(P)-Specific Sites.
C.M. Ensor and H.-H. Tai, Photoaffinity Labeling of NAD+-Linked Enzymes.
V. Micheli and S. Sestini, Determining NAD Synthesis in Erythrocytes.
E.L. Jacobson and M.K. Jacobson, Tissue NAD as Biochemical Measure of Niacin Status in Humans.
R.M. Graeff, T.F. Walseth, and H.C. Lee, Radioimmunoassay for Measuring Endogenous Levels of Cyclic ADP-Ribose in Tissues.
G. Magni, M. Emanuelli, A. Amici, N. Raffaelli, and S. Ruggieri, Purification of Human Nicotinamide-Mononucleotide Adenylyltransferase.
G. Magni, M. Emanuelli, A. Amici, N. Raffaelli, and S. Ruggieri, Nicotinamide-Mononucleotide Adenylyltransferases from Yeast and Other Microorganisms.
J. Zhang, Use of Biotinylated NAD to Label and Purify ADP-Ribosylated Proteins.
M.K. Jacobson, D.L. Coyle, C.Q. Vu, H. Kim, and E.L. Jacobson, Preparation of Cyclic ADP-Ribose, 2'-Phospho-Cyclic ADP-Ribose, and Nicotinate Adenine Dinucleotide Phosphate: Possible Second Messengers of Calcium Signaling.
D. Cervantes-Laurean, E.L. Jacobson, and M.K. Jacobson, Preparation of Low Molecular Weight Model Conjugates for ADP-Ribose Linkages to Protein.
T.F. Walseth, L. Wong, R.M. Graeff, and H.C. Lee, Bioassay for Determining Endogenous Levels of ADP-Ribose.
T.F. Walseth, R. Aarhus, M.E. Gurnack, L. Wong, H.A. Breitinger, K.R. Gee, and H.C. Lee, Preparation of Cyclic ADP-Ribose Antagonists and Caged Cyclic ADP-Ribose.
H. Okamoto, S. Takasawa, A. Tohgo, K. Nata, I. Kato, and N. Noguchi, Synthesis and Hydrolysis of Cyclic ADP-Ribose by Human Leukocyte Antigen CD38: Inhibition of Hydrolysis by ATP and Physiological Significance.
C.B. Munshi, K.B. Fryxell, H.C. Lee, and W.D. Branton, Large-Scale Production of Human CD38 in Yeast by Fermentation.
H.C. Lee, R.M. Graeff, C.B. Munshi, T.F. Walseth, and R. Aarhus, Large-Scale Purification of Aplysia ADP-Ribosylcyclase and Measurement of Its Activity by a Fluorimetric Assay.
Flavins and Derivatives:
S.-I. Huang, M.J. Caldwell, and K.L. Simpson, Urinary Riboflavin Determination by C18 Reversed-Phase, Open-Column Chromatography.
K. Matsui and S. Kasai, Chemical Synthesis and Properties of 7alpha-Hydroxyriboflavin.
A.F. Backmann, V. Wray, and A. Stocker, Synthesis of N6-(2-Aminoethyl)-FAD, N6-(6-Carboxyhexyl)-FAD, and Related Compounds.
G. Richter, C. Krieger, R. Volk, K. Kis, H. Ritz, E. Gitze, and A. Bacher, Biosynthesis of Riboflavin: 3,4-Dihydroxy-2-butanone-4-phosphate Synthase.
A. Bacher, G. Richter, H. Ritz, S. Eberhardt, M. Fischer, and C. Krieger, Biosynthesis: Riboflavin GTP Cyclohydrolase II, Deaminase, and Reductase.
A. Bacher, S. Eberhardt, M. Fischer, S. Mirtl, K. Kis, K. Kugelbrey, J. Scheuring, and K. Schott, Biosynthesis of Riboflavin: Lumazine Synthase and Riboflavin Synthase.
G. Rindi and G. Gastaldi, Measurements and Characteristics of Intestinal Riboflavin Transport.
D.B. McCormick, M. Oka, D.M. Bowers-Komro, Y. Yamada, and H.A. Hartman, Purification and Properties of FAD Synthetase from Liver.
K. Decker and R. Brandsch, Determining Covalent Flavinylation.
R.S-F. Lee and H.C. Ford, Purification and Characterization of 5-Nucleotidase/FAD Pyrophosphatase from Human Placenta.
Y.V.S.N. Murthy and V. Massey, Syntheses and Application of Flavin Analogs as Active-Site Probes for Flavoproteins.
Subject Index.
Author Index.