
Tropical Cyclones
Observations and Basic Processes
- 1st Edition, Volume 4 - September 22, 2023
- Imprint: Elsevier
- Authors: Roger K. Smith, Michael T. Montgomery
- Language: English
- Paperback ISBN:9 7 8 - 0 - 4 4 3 - 1 3 4 4 9 - 4
- eBook ISBN:9 7 8 - 0 - 4 4 3 - 1 3 4 5 0 - 0
Tropical cyclones are a major threat to life and property, even in the formative stages of their development. They include a number of different hazards that individually can ca… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteTropical cyclones are a major threat to life and property, even in the formative stages of their development. They include a number of different hazards that individually can cause significant impacts, such as extreme winds, storm surge, flooding, tornadoes, and lightning. Tropical Cyclones: Observations and Basic Processes provides a modern overview of the theory and observations of tropical cyclone structure and behavior.
The book begins by summarizing key observations of the structure, evolution, and formation of tropical cyclones. It goes on to develop a theoretical foundation for a basic understanding of tropical cyclone behavior during the storm’s life cycle. Horizontally two-dimensional dynamics of vortex motion and other non-axisymmetric features are considered first before tackling the axisymmetric balance dynamics involving the overturning circulation. Following a review of moist convective processes, later chapters focus mainly on a range of three-dimensional aspects of the tropical cyclone life cycle. Building from first principles, the book provides a state-of-the-art summary of the fundamentals of tropical cyclones aimed at advanced undergraduates, graduate students, tropical meteorologists, and researchers.
Members of the Royal Meteorological Society are eligible for a 35% discount on all Developments in Weather and Climate Science series titles. See the RMetS member dashboard for the discount code.
- Develops a systematic foundation for understanding tropical cyclone dynamics and thermodynamics in two and three dimensions
- Provides a detailed appraisal of steady-state models and the widely accepted, but enigmatic, WISHE intensification theories
- Applies the new ideas developed in the book to a range of basic problems, including observational tests of the theory
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Epigraph
- Preface
- Acknowledgments
- Nomenclature
- Chapter 1: Observations of tropical cyclones
- 1.1. Tropical-cyclone tracks
- 1.2. Structure
- 1.2.1. Formation and intensification of Hurricane Patricia
- 1.2.2. Flight level wind structure and temperature structure
- 1.2.3. Vertical cross sections in Hurricane Edouard (2015)
- 1.2.4. Low-level structure of Hurricanes Isabel (2003) and Earl (2010)
- 1.2.5. Thermodynamic structure of Hurricane Earl's eye and eyewall
- 1.2.6. Intensity, strength, and size
- 1.2.7. Asymmetries
- 1.2.8. Secondary eyewalls
- 1.3. Surface heat and moisture supply
- 1.4. Ocean interaction
- 1.5. Tropical cyclone genesis
- 1.5.1. Formation regions
- 1.5.2. Necessary conditions for formation
- 1.5.3. Highlights from field experiments
- 1.5.4. The formation of a tropical depression
- 1.5.5. The multi-scale nature of genesis in the real world
- 1.5.6. Practical outcomes
- 1.6. Synthesis
- Chapter 2: Fluid dynamics and moist thermodynamics
- 2.1. The equations of motion
- 2.2. Buoyancy and perturbation pressure
- 2.3. Thermodynamics
- 2.3.1. Equation of state
- 2.3.2. Thermodynamic energy equation
- 2.3.3. Potential temperature and specific entropy
- 2.3.4. Static energy
- 2.4. Prognostic and diagnostic equations
- 2.5. Moist processes
- 2.5.1. Equation of state for moist air
- 2.5.2. Saturation and latent heat release
- 2.5.3. Pseudo-adiabatic ascent
- 2.5.4. Equivalent potential temperature, moist entropy, moist static energy
- 2.6. Viscosity, diffusion, friction, and turbulence
- 2.7. Methods of solution
- 2.8. Kinetic energy and total energy
- 2.9. Vorticity and the vorticity equation
- 2.10. Vorticity-streamfunction method
- 2.11. Circulation
- 2.11.1. Kelvin's theorem
- 2.11.2. Beyond barotropy
- 2.12. Potential vorticity
- 2.13. Balance dynamics
- 2.14. PV global constraints
- 2.15. PV flux form and impermeability theorem
- 2.16. Vorticity flux equation
- 2.17. Coordinate systems
- 2.18. Exercises
- 2.19. Appendix: the membrane analogy
- Chapter 3: Tropical cyclone motion
- 3.1. The observations to be explained
- 3.2. The partitioning problem
- 3.3. Prototype problems
- 3.3.1. Symmetric vortex in a uniform flow
- 3.3.2. Vortex motion on a β-plane
- 3.3.3. The effects of an environmental flow
- 3.3.4. More general environmental flows
- 3.4. Observations of the β-gyres
- 3.5. Exercises
- 3.6. Appendices
- 3.6.1. Appendix 1: transformation of the momentum equation to an accelerating frame of reference
- 3.6.2. Appendix 2: derivation of Eq. (3.14)
- 3.6.3. Appendix 3: solution of Eq. (3.22)
- Chapter 4: Vortex axisymmetrization, waves and wave-vortex interaction
- 4.1. Illustration of flow asymmetries
- 4.1.1. Examples of vortex axisymmetrization
- 4.2. Vortex merger and separation, Fujiwhara effect
- 4.3. The pseudo-mode
- 4.4. Vortex shear waves and vortex Rossby waves
- 4.4.1. Force balances in a circular vortex
- 4.4.2. Vortex waves and instabilities
- 4.4.3. Generalized Rayleigh and Fjortoft instability theorems
- 4.4.4. Solution to initial value problems
- 4.4.5. Case I: bounded Rankine vortex: V=Γ/r, Ω=Γ/r2, Γ = constant, a⩽r⩽b
- 4.4.6. More on vortex waves
- 4.4.7. Relevance to tropical cyclones
- 4.4.8. Case II: unbounded Rankine vortex
- 4.4.9. Case III: unbounded Rankine-like vortex with multiple discontinuities in ζ
- 4.5. Wave-vortex interaction
- 4.5.1. Effect of discrete VR wave only
- 4.5.2. Effect of exterior disturbance on outer flow
- 4.5.3. Effect of exterior disturbances on vmax
- 4.5.4. Effect of near-core disturbances on vmax
- 4.5.5. Model limitations applied to smooth vortices: quasi-modes
- 4.5.6. Resonant wave, vortex interaction
- 4.6. Synthesis
- 4.7. Enrichment topics
- 4.7.1. Vortex intensification by stochastic forcing with secondary circulation
- 4.7.2. Point vortex analog of wave, vortex model
- 4.7.3. VR wave pathway to secondary eyewall formation?
- 4.8. Exercises
- Chapter 5: Axisymmetric vortex theory fundamentals
- 5.1. Equations of motion in rotating cylindrical polar coordinates
- 5.2. The primary circulation
- 5.3. Interpretation of the thermal wind equation
- 5.4. Generalized buoyancy
- 5.4.1. Exercises
- 5.5. The tropical cyclone eye
- 5.6. Spin up of the primary circulation
- 5.7. Stability
- 5.7.1. Barotropic vortices
- 5.7.2. Exercises
- 5.7.3. Baroclinic vortices
- 5.7.4. Exercises
- 5.8. Scale analysis
- 5.8.1. Continuity equation
- 5.8.2. Momentum equations
- 5.8.3. Thermodynamic equation
- 5.8.4. Exercise
- 5.9. The secondary circulation
- 5.9.1. Exercises
- 5.10. Solutions of the Eliassen equation
- 5.10.1. Boundary effects in the membrane analogy
- 5.10.2. Scale effects in the membrane analogy
- 5.10.3. Other anisotropic effects in the membrane analogy
- 5.10.4. Exercise
- 5.10.5. Point source solutions in an unbounded domain
- 5.10.6. Point source solutions in a partially bounded domain
- 5.11. Representation of the diabatic heating rate, θ˙
- 5.12. Buoyancy relative to a balanced vortex
- 5.12.1. Local buoyancy and system buoyancy
- 5.13. Enrichment topics
- 5.13.1. Toroidal vorticity equation
- 5.13.2. Eliassen equation and toroidal vorticity equation
- 5.13.3. Geopotential tendency equation
- 5.13.4. Deductions from the spin-up function
- 5.13.5. The linear approximation, the Eliassen equation and extension to include unbalanced forcing
- Chapter 6: Frictional effects
- 6.1. Vortex spin down
- 6.2. Scale analysis of the equations with friction
- 6.2.1. w-momentum equation
- 6.2.2. u- and v-momentum equations
- 6.2.3. Boundary layer depth scale
- 6.2.4. Boundary layer equations
- 6.3. The Ekman layer
- 6.4. The linear approximation
- 6.4.1. Physical interpretation
- 6.4.2. Mathematical solution
- 6.4.3. Vertical structure of the solution
- 6.4.4. Observed wind structure
- 6.4.5. Radial-vertical structure
- 6.4.6. Interpretation, torque balance
- 6.4.7. Factors determining the inflow and vertical motion
- 6.4.8. Dependence on vortex size
- 6.4.9. Supergradient winds in the linear solution
- 6.4.10. Exercises
- 6.4.11. Limitations of linear theory
- 6.5. A nonlinear slab boundary layer model
- 6.5.1. The boundary layer equations
- 6.5.2. Representation of surface and top fluxes
- 6.5.3. The final equations
- 6.5.4. Starting conditions at large radius
- 6.5.5. Exercise
- 6.5.6. Slab boundary layer solutions
- 6.5.7. Physical interpretation
- 6.6. The boundary-layer spin up enhancement mechanism
- 6.7. Limitations of the two boundary layer models
- 6.7.1. Advantages of the slab model
- 6.7.2. Limitations of boundary-layer theory in general
- 6.7.3. Balanced boundary layer approximation
- 6.8. Importance of the tropical cyclone boundary layer
- 6.9. Appendices
- 6.9.1. Appendix 1: radial variation of ν, I2, a1, and a2 in the linear boundary layer solution
- 6.9.2. Appendix 2: what determines the vertical velocity in the linear boundary layer?
- 6.9.3. Appendix 3: the upper boundary condition
- Chapter 7: Estimating boundary layer parameters
- 7.1. Boundary layer structure, supergradient winds
- 7.2. Subgrid-scale parameterizations
- 7.3. Vertical diffusivity in the boundary layer
- 7.4. Horizontal diffusivity in the boundary layer
- 7.5. Air-sea interaction, drag coefficient, enthalpy coefficient
- Chapter 8: A prognostic balance theory for vortex evolution
- 8.1. Solutions for the evolution of a balanced vortex
- 8.1.1. Diabatic heating, no friction
- 8.1.2. Friction, no heating
- 8.1.3. Diabatic heating and friction
- 8.2. Interpretation: the classical spin up mechanism
- 8.2.1. Exercises
- 8.3. Rotational stiffness, latitude dependence and vortex size evolution
- 8.3.1. A laboratory experiment
- 8.3.2. Balance considerations
- 8.3.3. Idealized balance simulations
- 8.3.4. Effects of friction on vortex size growth
- 8.3.5. Vortex intensity and size metrics
- 8.3.6. Dependence of frictionally-driven inflow on latitude
- 8.3.7. Summary
- 8.4. Interplay between diabatic heating and friction
- 8.4.1. Flow structure at the initial time
- 8.4.2. Flow structure at later times
- 8.4.3. Summary: the issue of convective ventilation
- 8.4.4. Pathological nature of the balanced boundary layer
- 8.4.5. Utility and limitations of the prognostic balance model
- 8.5. Appendix
- Chapter 9: Moist convection
- 9.1. Convective instability
- 9.2. Aerological diagrams
- 9.2.1. CAPE and CIN
- 9.2.2. Height-temperature-difference diagram
- 9.2.3. More on aerological diagrams
- 9.2.4. The use of θe for assessing convective instability
- 9.3. Types of penetrative convection
- 9.3.1. Shallow convection
- 9.3.2. Intermediate convection
- 9.3.3. Deep convection
- 9.3.4. Convective downdrafts
- 9.4. Understanding the effects of deep convection on the tropical circulation
- 9.5. Buoyancy in a finite horizontal domain
- 9.6. Quantification of effective buoyancy
- 9.7. Implications for CAPE
- 9.8. More on CAPE
- 9.9. Cloud structure in tropical cyclones
- 9.9.1. Ventilation by deep convection in tropical cyclones
- 9.10. Exercises
- 9.11. Appendices
- 9.11.1. Appendix 1: effective buoyancy per unit volume
- 9.11.2. Appendix 2: numerical solution of Eq. (9.15)
- 9.11.3. Appendix 3: forcing of p′ by Fd in Eq. (9.15) on the upper domain axis
- Chapter 10: Tropical cyclone formation and intensification
- 10.1. The prototype problem for genesis and intensification
- 10.2. A simplified numerical model experiment
- 10.3. The numerical simulation
- 10.3.1. A summary of vortex evolution
- 10.3.2. Evolution of vorticity
- 10.4. Moist instability and θe
- 10.5. Azimuthal mean view of vortex evolution
- 10.6. Modified view of spin up
- 10.7. A system-averaged perspective
- 10.8. Predictability issues
- 10.9. Inclusion of ice processes
- 10.10. Vortex evolution with and without ice
- 10.11. Moist instability and θe
- 10.12. An azimuthal mean view of vortex evolution
- 10.13. Mid-level vortex development with ice microphysics
- 10.13.1. Increasing influence of the boundary layer
- 10.13.2. Synthesis
- 10.14. Boundary layer control
- 10.14.1. Boundary layer coupling in brief
- 10.14.2. A demonstration of boundary layer coupling
- 10.15. Towards a conceptual model for tropical cyclogenesis
- Chapter 11: The rotating-convection paradigm
- 11.1. Flux form of the vorticity equation
- 11.2. Axisymmetric flow
- 11.3. Non-axisymmetric flow
- 11.4. Azimuthally-averaged tangential and radial wind tendency
- 11.4.1. Characterizing eddy processes
- 11.4.2. Attributes of the mean-eddy flow partitioning
- 11.4.3. Eddy effects of an isolated deep convective cloud
- 11.5. Applications to a numerical model simulation
- 11.5.1. Tangential velocity tendency analysis
- 11.5.2. Spin up at later times
- 11.5.3. Radial velocity tendency analysis
- 11.5.4. Summary of radial velocity analysis at 30 h
- 11.6. Other features of the numerical simulation
- 11.6.1. Upper level inflow jets
- 11.6.2. Centrifugal recoil effect
- 11.7. Summary of the rotating-convection paradigm
- Chapter 12: Emanuel's intensification theories
- 12.1. The intensification theories
- 12.1.1. The Emanuel 1989 theory
- 12.1.2. The Emanuel 1995 theory
- 12.1.3. The later theories
- 12.1.4. Specifics of the E97 theory
- 12.2. The air-sea interaction intensification theory, WISHE
- 12.3. The E12 theory
- 12.3.1. Specifics of the E12 theory
- 12.4. A boundary layer explanation for spin up
- 12.5. Congruence of M and θe⁎ surfaces during spin up?
- 12.6. Appraisal of the Emanuel intensification theories
- 12.7. Relevance to hurricanes in a warmer world?
- 12.8. Appendix: derivation of ∂vm/∂τ in the E12 theory, Eq. (12.4)
- Chapter 13: Emanuel's maximum intensity theory
- 13.1. The E86 steady-state model
- 13.1.1. Dissipative heating
- 13.1.2. High resolution tests of the E86 PI theory
- 13.2. Unbalanced effects
- 13.3. A revised theory
- 13.4. Three dimensional effects
- 13.5. Summary of Emanuel's steady-state PI theories
- 13.6. Appendix A: Derivation of an extended PI model, Eq. (13.7)
- 13.6.1. Formulation for the free troposphere
- 13.6.2. Boundary layer closure
- 13.7. Appendix B: Construction of E86 steady-state hurricane solution
- 13.7.1. Conceptual overview
- 13.7.2. Deductions from thermal wind balance and moist neutrality
- 13.7.3. Boundary layer constraints
- 13.7.4. Solution for lnπ in Region III
- 13.7.5. Solution for lnπ in Regions I + II
- 13.7.6. Solution for vgmax2 and lnπs at r=rgm
- 13.7.7. The complete solution
- 13.7.8. The tropical cyclone as a Carnot-like heat engine
- 13.8. Exercises
- Chapter 14: Global budgets and steady state considerations
- 14.1. The numerical simulation
- 14.2. Budget calculations
- 14.2.1. Water budget
- 14.2.2. Kinetic energy budget (Gill form)
- 14.2.3. Kinetic energy budget (Anthes form)
- 14.2.4. Kinetic energy budget calculations
- 14.2.5. Total energy budget
- 14.3. Role of surface enthalpy fluxes
- 14.3.1. Contributions to θe changes
- 14.3.2. Some observations
- 14.4. Absolute angular momentum budget
- 14.5. Exercises
- 14.6. Global steady-state requirements
- Chapter 15: Tropical cyclone life cycle
- 15.1. Newtonian cooling
- 15.2. Life cycle metrics
- 15.3. Vortex asymmetries
- 15.3.1. Genesis and RI phases
- 15.3.2. First mature phase
- 15.3.3. Decay phase
- 15.4. Azimuthally-averaged view of vortex evolution
- 15.4.1. Mature phase
- 15.4.2. Temporary decay and reintensification phase
- 15.4.3. A new pathway to inner-core rainband formation
- 15.4.4. Decay phase
- 15.5. Interpretations of the life cycle
- 15.5.1. Important kinematical features
- 15.5.2. Boundary layer dynamics
- 15.5.3. Boundary layer coupling
- 15.5.4. Ventilation of the boundary layer inflow
- 15.5.5. Convection component of ventilation
- 15.6. Life cycle summary
- Chapter 16: Applications of the rotating-convection paradigm
- 16.1. Minimal conceptual models for vortex intensification
- 16.1.1. A general prognostic balance model
- 16.1.2. Zero-order model
- 16.1.3. A minimal representation of friction
- 16.1.4. First-order model
- 16.1.5. Exercises
- 16.1.6. Beyond the minimal representation of friction
- 16.1.7. Cumulus parameterization in minimal models
- 16.1.8. Role of the WISHE feedback?
- 16.1.9. Important caveats
- 16.1.10. Synthesis
- 16.2. Comparison between three-dimensional and axisymmetric tropical cyclone dynamics
- 16.2.1. Synthesis
- 16.3. The effects of latitude on tropical cyclone intensification
- 16.3.1. The Smith et al. (2015a) simulations
- 16.3.2. Vortex evolution at different latitudes
- 16.3.3. Slab boundary layer solutions
- 16.3.4. Thermodynamic support for deep convection
- 16.3.5. Diabatically-forced overturning circulation
- 16.3.6. Quantifying the effects of rotational stiffness
- 16.3.7. Flow asymmetries
- 16.3.8. Summary of latitudinal dependence
- 16.4. The effects of sea surface temperature on intensification
- 16.4.1. Interpretation of the SST dependence
- 16.4.2. Summary of SST effects
- 16.5. The effects of initial vortex size on genesis and intensification
- 16.5.1. Numerical experiments on vortex size
- 16.5.2. Synthesis
- 16.6. Tropical cyclogenesis at and near the Equator
- 16.6.1. An idealized numerical study
- 16.6.2. Synthesis
- 16.7. Observational tests of the rotating-convection paradigm
- 16.8. Tropical lows over land
- 16.8.1. A tropical low case study
- 16.8.2. Synthesis
- 16.9. Polar lows, medicanes and tropical cyclones
- 16.10. The rotating-convection paradigm in the research of others
- 16.10.1. An idealized numerical study
- 16.10.2. Formation of a thermodynamic shield in a Category 5 hurricane, but not in a Category 3 hurricane
- 16.10.3. Invocation of WISHE-like positive feedback mechanism to explain the rapid intensification of Hurricane Michael (2018)
- 16.10.4. Synthesis
- 16.11. Vertical shear regimes
- 16.11.1. Synthesis
- Chapter 17: Epilogue
- 17.1. Examples of recent events
- 17.1.1. Formation and intensification of Hurricane Fiona (2022)
- 17.1.2. Increasing size of Hurricane Fiona
- 17.1.3. Formation and intensification of Hurricane Ian (2022)
- 17.1.4. Increasing size of Hurricane Ian
- 17.2. Applications and future directions
- References
- Index
- Edition: 1
- Volume: 4
- Published: September 22, 2023
- No. of pages (Paperback): 442
- No. of pages (eBook): 600
- Imprint: Elsevier
- Language: English
- Paperback ISBN: 9780443134494
- eBook ISBN: 9780443134500
RS
Roger K. Smith
MM