LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Treatment and Utilization of Combustion and Incineration Residues introduces state-of-art strategies for combustion and incineration solid residue management and utilizati… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Treatment and Utilization of Combustion and Incineration Residues introduces state-of-art strategies for combustion and incineration solid residue management and utilization. The book also reviews current technologies for pollutant removal and control of combustion and incineration residues. Recycling ashes and slags in sustainable construction materials are also evaluated on environmental impacts and engineering values, and the use of different ashes and slags in cement clinker production is classified based on the sources and properties of the residues. In addition, the recovery of valuable metals and inorganic elements is also discussed.
Finally, the book examines the latest understanding of reaction mechanisms of various treatment technologies, the future design of treatment technologies, and the actualization of sustainable management for combustion/incineration residues.
Part I Overview of combustion/incineration residues
1. Conception and process of combustion and incineration
2. Regulations and policies for combustion/incineration residues treatment and utilization
3. State-of-the-art characterization techniques for combustion/incineration residues
4. Characteristics of combustion residues, waste incineration residues, various slags
Part II Purification and detoxification of combustion/incineration residues
5. Cement-based immobilization of combustion/incineration residues
6. Sintering and melting of combustion/incineration residues
7. Hydrothermal treatment of combustion/incineration residues
8. Chemical agent-based immobilization of combustion/incineration residues
9. Electrochemical and mechanochemical treatment of combustion/incineration residues
10. Biochemical treatment of combustion/incineration residues
11. Washing and emerging treatment (carbonation/microwave) of combustion/incineration residues
12. Environmental risk assessment methodology on combustion/incineration residues
Part III Recycling of combustion/incineration residues into cement clinker
13. Recycling of pulverized fly ash into cement clinker
14. Recycling of incineration sewage sludge ash into cement clinker
15. Recycling of municipal solid waste incineration fly ash and bottom ash into cement clinker
16. Recycling of various slags into cement clinker
Part IV Recycling of combustion/incineration residues into SCMs and aggregates
17. Recycling of pulverized fuel ash into SCMs and aggregates
18. Recycling of biomass combustion ash into SCMs and aggregates
19. Recycling of incineration sewage sludge ash into SCMs and aggregates
20. Recycling of municipal solid waste incineration fly ash into SCMs and aggregates
21. Recycling of municipal solid waste incineration bottom ash into SCMs and aggregates
22. Recycling of various slags into SCMs and aggregates
Part V Recycling of combustion/incineration residues into functional materials
23. Recycling of combustion/incineration residues into zeolites and ceramics
24. Recycling of combustion/incineration residues into foaming agents
25. Recycling of combustion/incineration residues into soil amendments
Part VI Resource recovery from combustion/incineration residues
26. Resource recovery from pulverized coal fly ash and bottom ash
27. Resource recovery from incinerated sewage sludge ash
28. Resource recovery from municipal solid waste incineration fly ash
29. Resource recovery from various slags
Part VII Future prospects
30. Environmental impacts of combustion/incineration residue-derived products
31. Life cycle and cost-benefit analysis on different utilization/treatment strategies
32. Current bottlenecks and future directions on academic studies and industrial applications
LW
DT
Prof. Tsang is the leading scientist in the fields of waste-to-resource technology, hazardous waste treatment, and carbon capture and utilization. Over the years, Dan has published more than 500 peer-reviewed papers in the top 10% journals, including 88 Highly Cited Papers as of March 2022. He was awarded as 2021-2023 Highly Cited Researcher (Clarivate Analytics) in two academic fields of Engineering as well as Environment and Ecology. He is the Chairman of the Hong Kong Waste Management Association, and the Waste Management Subcommittee of Advisory Council on the Environment, HKSAR Government. He has been invited to deliver more than 160 invited talks at international conferences and invited seminars at overseas universities. His professional contribution has been recognized by local and international communities, and he has served as the Editor-in-Chief, npj Materials Sustainability, Nature Portfolio (2023-), the Associate Editors for the top 10% journals, such as Science of the Total Environment (2018-2024), Critical Reviews in Environmental Science & Technology (2018-), Journal of Environmental Management (2022-), Journal of Hazardous Materials (2019-2021); and served as Editorial Boards for Bioresource Technology (2019-), Environmental Pollution (2019-), Chemosphere (2015-), etc.
JY