List of Contributors
Preface
Evan Tom Davies
References
Reminiscences of E. T. Davies
1. Projective Differential Geometry
2. Theory of Connections
References
The Uniqueness of the Neutrino Energy-Momentum Tensor and the Einstein-Weyl Equations
1. Introduction
2. Proofs of the Theorems
Appendix
References
(G, E) Structures
References
Tensorial Concomitants of an Almost Complex Structure
1. Introduction
2. A Special Chart for an Almost Complex Structure
3. A "Natural" Hermitian, Symmetric, Bilinear Form on an Almost Complex Manifold
4. The S Derivative
References
Variétés Symplectiques, Variétés Canoniques, et Systèmes Dynamiques
Introduction
I. Variétés Symplectiques et Variétés de Contact
1. Variétés Symplectiques Exactes
2. Variétés Symplectiques Exactes et Varietes de Contact
II. Systèmes Dynamiques
3. La Variété de Contact des États d'un Systeme Dynamique
4. Systeme Differentiel sur la Variete de Contact des Etats
5. Le Système Différentiel Usuel de Hamilton
III. Transformations Canoniques
6. Notion de Structure Canonique
7. L'ideal I, de l'Algèbre Extérieure des Formes d'Une Variété Canonique et Les Cartes Canoniques
8. Transformations Canoniques de (W, F, t)
9. Transformations Canoniques de (W˜, G˜, t)
10. Cas d'Une Variété Canonique á 2-forme
11. Variétés Exactes
Bibliographie
Divergence-Free Third Order Concomitants of the Metric Tensor in Three Dimensions
1. Introduction
2. The Uniqueness of Hij
References
A Functional Equation in the Characterization of Null Cone Preserving Maps
1. Introduction
2. Basic Hypotheses
3. Reduction to Functional Equations
4. Reduction to One Unknown Function
5. Reduction to Cauchy's Equation
6. Unification of Results
7. Additional Remarks
References
Generalized Clebsch Representations on Manifolds
1. Introduction
2. The Generalized Clebsch Representation
3. The Gauge Transformations
4. Associated Variational Problems
5. The Case n = 3
6. The Case n = 4
7. Higher Order Variational Problems Resulting from Clebsch Representations
References
Note on Locally Symmetric Vector Fields in a Riemannian Space
1. Introduction
2. Symmetry
3. First Order Local Symmetry
4. n > 3
5. n > 3: Spaces of Constant Curvature
6. n = 3
7. n = 3: Spaces of Constant Curvature
8. Second Order Local Symmetry
9. Second Order Symmetry: n > 3
10. Second Order Symmetry: n = 3
11. Orientation of Galaxies
Mean Curvature of Immersed Manifolds
1.
2.
3. Immersions in Riemannian Manifolds
4. Immersions of Surfaces in S3
5. Conformai Invariants
References
Connections and M-Tensors on the Tangent Bundle TM
1. Introduction
2. The Tangent Bundle and the Slit Tangent Bundle
3. Connections and M-Tensors and Their Simple Properties
4. (1, 1)-Connections as Horizontal Distributions on TM
5. Vector Fields on TM and Their Relation with a (1, 1)-Connection
6. (1, 0)-Connection on STM as Systems of Paths in M and as Second Order Differential Equations on M
7. Mappings Between Connections of Different Types and Their Compositions
8. Decomposition Theorems
References
Differential Geometry of Totally Real Submanifolds
0. Introduction
1. Preliminaries
2. Totally Real Submanifolds
3. Covariant Derivatives of fxi, fhy, and fxy
4. The Case in Which M2m Is a Complex Space Form
5. The Case in Which the Bochner Curvature Tensor of M2m Vanishes
References