Limited Offer
Thermionics
Basic Principles of Electronics
- 1st Edition - January 1, 1966
- Authors: J. Jenkins, W. H. Jarvis
- Editors: W. Ashhurst, L. L. Green
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 1 1 9 7 9 - 3
- Paperback ISBN:9 7 8 - 1 - 4 8 3 1 - 2 3 2 3 - 3
- eBook ISBN:9 7 8 - 1 - 4 8 3 1 - 5 5 6 5 - 4
Basic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteBasic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron dynamics, electron emission, and the themionic vacuum diode and triode. Power amplifiers, oscillators, and electronic measuring equipment are studied as well. The text will be of great use to physics and electronics students, and inventors.
Preface
Chapter 1. Physical Background
1.1. "Electronics" Defined
1.2. Structure of Matter
1.3. Chemical Combination
1.4. Ionic Combination
1.5. Covalent Combination
1.6. Crystalline Structure
1.7. Conductors and Insulators
1.8. Intrinsic Semiconductors
1.9. Impurity Semiconductors
1.10. Thermionic Emission
1.11. Evidence for Electrons
1.11.1. Electrolysis
1.11.2. Millikan's Oil Drop Experiment
Chapter 2. Electron dynamics
2.1. Relativistic Concepts
2.2. Motion of Charged Particles in a Steady Electric Field
2.2.1. The Electron-volt
2.3. Electric Fields
2.4. Electron Motion in a Uniform Electric Field
2.5. Cathode-ray Tube with Electrostatic Deflection
2.6. Electron Motion in a Uniform Magnetic Field
2.6.1. The Helical Electron Path
2.7. Cathode-ray Tube with Magnetic Deflection
2.8. Combined Electric and Magnetic Fields
2.9. Electron Optics
2.9.1. Magnetic Lens
2.9.2. Electrostatic Lens
2.9.3. The Electron Microscope
Chapter 3. Electrons in Solids
3.1. Crystal Structure
3.2. Electron Energy Levels
3.3. Electron Energy Bands
3.4. Electrical Conduction
3.5. Distribution of Energy in the Conduction Electrons
3.6. Statistics in Physics
3.7. Contact Potential Difference in Metals
Chapter 4. Electron Emission
4.1. Kinds of Emission
4.2. Thermionic Emission
4.2.1. Tungsten Cathode
4.2.2. Thoriated Tungsten Cathode
4.2.3. Oxide-coated Cathode
4.3. Secondary Emission
4.3.1. The Photomultiplier
4.3.2. Important Effects of Secondary Emission
4.4. Photoelectric Emission
4.4.1. Photoelectric Emission in a Vacuum Diode
4.5. Field Emission
Chapter 5. The Thermionic Vacuum Diode
5.1. Historical
5.2. Emphasis on the Ideal Case
5.3. Practical Thermionic Emitters
5.4. Thermionic Emission in a Vacuum Diode
5.5. The Child-Langmuir Equation
5.6. Rectification
5.6.1. Half-wave Rectification
5.6.2. Full-wave Rectification
5.6.3. Practical Rectifier Valves
5.7. Demodulation
Chapter 6. The Thermionic Vacuum Triode
6.1. Historical
6.2. Characteristic Curves
6.3. Analysis of a Triode
6.4. Analysis of a Triode with a Load R
6.5. Analysis of a Triode with a Load R and an Applied Signal
6.5.1. Analysis of a Triode with a Load R and a Small Direct Signal
6.5.2. Analysis of a Triode with a Load R and a Small Alternating Signal
6.6. Phase Relationships
6.7. Automatic Bias
6.8. Valve Equivalent Circuits
6.8.1. Current-generator Equivalent Circuit
6.8.2. Voltage-generator Equivalent Circuit
6.9. Multistage A.C. Amplifiers
6.10. Mutual Inductance Coupling (Transformer Coupling)
6.11. Feedback
6.12. Alternative Connections of Amplifiers
6.12.1. Input and Output Impedance
6.12.2. Common Cathode Amplifier
6.12.3. Common Anode Amplifier
6.12.4. Common Grid Amplifier
Chapter 7. Development of the Vacuum Triode
7.1. Interelectrode Capacitance
7.2. To Derive a More Correct Formula for the Gain
7.3. Summary of Triode Valve
7.4. The Tetrode Valve
7.5. Development of the Tetrode
7.5.1. Critical Interelectrode Spacing
7.5.2. Beamtetrode
7.6. The Pentode Valve
7.7. Pentode Voltage Amplifier
Chapter 8. Gas-filled Valves
8.1. Collisions between Electrons and Gas Molecules
8.1.1. Elastic Collision
8.1.2. Ionization Collision
8.1.3. Excitation Collision
8.2. Electron Avalanche
8.3. The Gas-filled Diode
8.4. Voltage Stabilization
8.5. The Thyratron
8.6. Time Bases
8.7. Power Control
Chapter 9. Power Amplifiers
9.1. Introduction
9.2. Determination of the Output Waveform from Both the Load Line and the Circuit Characteristic
9.2.1. For Small Signals
9.2.2. For Large Signals
9.3. Distortion
9.4. Power Amplifier with a Resistive Load
9.5. Energy Considerations
9.6. Curvature of the Characteristics
9.7. Maximum Undistorted Power Output
9.8. Operating Conditions of Transformer Loaded Power Amplifiers
Chapter 10. Oscillators
10.1. General
10.2. The LCR Circuit
10.3. Feedback Oscillators
10.3.1. Meissner Oscillators
10.3.2. The Hartley Circuit
10.3.3. The Colpitts Circuit
10.3.4. The Clapp Circuit
10.4. Negative Resistance Oscillators
10.4.1. The Dynatron
10.4.2. The Transitron
Chapter 11. Electronic Measuring Equipment
11.1. D.C. Amplifiers
11.2. Photoelectric Cells
11.2.1. Photovoltaic Cells
11.2.2. Photoemissive Cells
11.2.3. Photoconductive Cells
11.3. Valve Voltmeters
11.3.1. Diode Circuits
11.3.2. The "Cumulative Grid" Circuit
11.3.3. The Anode-bend Circuit
11.3.4. The Cathode-follower Circuit
11.3.5. The Slide-back Circuit
11.3.6. Balancing Circuits
11.4. Electrometer Valves
11.5. The Cathode-ray Oscilloscope
Appendix 1. List of Algebraic Symbols
Appendix 2. Terms, Symbols and Abbreviations Used in the Experimental Sections
Appendix 3. The Operator j and Complex Numbers
Appendix 4. Decibel Notation
Appendix 5. Bibliography
Appendix 6. Useful Constants
Appendix 7. Index Notation
Index
- No. of pages: 238
- Language: English
- Edition: 1
- Published: January 1, 1966
- Imprint: Pergamon
- Hardback ISBN: 9780080119793
- Paperback ISBN: 9781483123233
- eBook ISBN: 9781483155654