AI & BIG DATA
Shaping today's innovations
Save up to 25% on AI & Big Data books, eBooks & Journals

Recently, the orthopedic industry developed new processing techniques (radiation crosslinking), which are expected to dramatically reduce wear and improve the longevity of hip… Read more
AI & BIG DATA
Save up to 25% on AI & Big Data books, eBooks & Journals
SK
As a principle engineer at Exponent, an international engineering and scientific consulting company, his research on UHMWPE is supported by several major orthopedic manufacturers. He has funding from the National Institutes for Health to stdy UHMWPE changes after implanatation in the body, as well as to develop new computer-based tools to predict the performance of new UHMWPE materials.
Dr. Kurtz is the Director of an orthopedic implant retrieval program in Philadelphia which is affiliated with Drexel University and Thomas Jefferson University. He teaches classes on the performance of orthopedic polymers (including UHMWPE) at Drexel, Temple, and Princeton Universities.
SK
As a principle engineer at Exponent, an international engineering and scientific consulting company, his research on UHMWPE is supported by several major orthopedic manufacturers. He has funding from the National Institutes for Health to stdy UHMWPE changes after implanatation in the body, as well as to develop new computer-based tools to predict the performance of new UHMWPE materials.
Dr. Kurtz is the Director of an orthopedic implant retrieval program in Philadelphia which is affiliated with Drexel University and Thomas Jefferson University. He teaches classes on the performance of orthopedic polymers (including UHMWPE) at Drexel, Temple, and Princeton Universities.