Back to School Savings: Save up to 30% on print books and eBooks. No promo code needed.
Back to School Savings: Save up to 30%
The Theory and Practice of Scintillation Counting International Series of Monographs in Electronics and Instrumentation 1st Edition - January 1, 1964
Author: J. B. Birks
Editors: D.W. Fry, L. Costrell, K. Kandiah
eBook ISBN: 9781483156064 9 7 8 - 1 - 4 8 3 1 - 5 6 0 6 - 4
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation… Read more
Save 50% on book bundles Immediately download your ebook while waiting for your print delivery. No promo code is needed.
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
Preface Acknowledgments Chapter 1. Introduction 1.1. The Detection of Atomic and Nuclear Radiations 1.1.1. Dosimeters 1.1.2. Track Visualization Instruments 1.1.3. Counters 1.1.4. Applications of Counters 1.2. Early History of the Scintillation Counter 1.2.1. Visual Scintillation Counters 1.2.2. Geiger Scintillation Counters 1.2.3. Photomultiplier Scintillation Counters 1.3. Principles of the Scintillation Counter 1.4. General Bibliography 1.5. References Chapter 2. Absorption of the Incident Radiation 2.1. Nature of the Radiations 2.2. Heavy Charged Particles 2.3. Electrons 2.4. Electromagnetic Radiations 2.4.1. The Compton Effect 2.4.2. The Photo-electric Effect 2.4.3. Pair Production 2.4.4. Multiple Processes 2.5. Neutrons 2.5.1. Scattering 2.5.2. Absorption 2.6. References Chapter 3. The Scintillation Process in Organic Materials—I 3.1. The Electronic Structure of Organic Molecules 3.2. Excited States of π-Electron Systems 3.2.1. Classification on Free-electron Model 3.2.2. Absorption Spectra 3.3. Luminescence 3.3.1. Fluorescence 3.3.2. Phosphorescence and Delayed Fluorescence 3.3.3. Dimers 3.4. Classification of Organic Scintillators 3.5. Outline of Scintillation Phenomena 3.6. The Scintillation Mechanism 3.7. The Primary Processes 3.7.1. Excitation and Ionization 3.7.2. Primary Excitation Energy 3.7.3. Internal Conversion 3.8. Fluorescence of Unitary Systems 3.8.1. De-excitation Processes 3.8.2. Thin Crystals 3.8.3. Thick Crystals 3.9. Energy Transfer and Fluorescence in Binary Systems 3.10. Energy Transfer and Fluorescence in Ternary Systems 3.11. The Absolute Scintillation Efficiency 3.12. References Chapter 4. The Scintillation Process in Inorganic Crystals—I 4.1. Introduction 4.2. The Energy Band Model 4.2.1. Perfect Crystals 4.2.2. Imperfect Crystals 4.3. Conditions for Luminescence of a Center 4.4. Classification of Inorganic Phosphors and Scintillators 4.4.1. Phosphors 4.4.2. Scintillators 4.5. Outline of Scintillation Phenomena 4.6. Optical Properties of Alkali Halide Crystals 4.6.1. General 4.6.2. Absorption Spectra 4.6.3. Luminescence Spectra 4.7. Optical Properties of Thallium Activator Centers 4.7.1. Absorption Spectra 4.7.2. Luminescence Spectra 4.7.3. Theoretical Model 4.7.4. Photoluminescence Decay Times 4.8. The Scintillation Mechanism 4.8.1. Sequence of Processes 4.8.2. The Absolute Scintillation Efficiency 4.9. References Chapter 5. The Detection of Scintillations 5.1. Light Collection 5.1.1. Self-absorption in the Scintillator 5.1.2. Light Trapping 5.1.3. Reflectors 5.1.4. NaI(Tl) Crystal Assemblies 5.1.5. Light Guides and Couplers 5.2. Spectral Response 5.2.1. Spectral Matching 5.2.2. Factors Determining Cathode Spectral Response 5.2.3. Specification of Cathode Response and Sensitivity 5.2.4. Types of Photocathode 5.3. Photomultipliers 5.3.1. Dynode Structures 5.3.2. Cathode-First Dynode Structures 5.3.3. Uniformity of Photocathode Response 5.3.4. Gain 5.3.5. High Tension Supply 5.3.6. The Anode 5.3.7. Feedback and Satellite Pulses 5.3.8. Other Background Effects 5.3.9. Fatigue 5.3.10. Magnetic Field Effects 5.3.11. Dark Noise 5.3.12. Reduction of Effect of Dark Noise 5.3.13. Temperature Dependence of Sensitivity and Response 5.3.14. Commercial Photomultipliers 5.4. Pulse Amplitude Resolution 5.4.1. Theoretical Studies 5.4.2. Factors Contributing to Line Width 5.4.3. Scintillator Resolution 5.4.4. Experimental Studies 5.4.5. Anthracene Excited by Electrons 5.4.6. Sodium Iodide (Thallium) Excited by γ-Rays 5.5. Pulse Shape and Time Resolution 5.5.1. The Light Pulse and Photo-electron Emission 5.5.2. The Single Electron Response 5.5.3. The Anode Pulse Shape 5.5.4. Statistics and Time Resolution 5.5.5. Effect of Anode Pulse Shape on Pulse Amplitude Resolution 5.6. References Chapter 6. The Scintillation Process in Organic Materials—II 6.1. The Scintillation Response to Different Ionizing Radiations 6.1.1. Review of Experimental Data 6.1.2. Ionization Quenching 6.1.3. Bimolecular Quenching 6.1.4. Static and Dynamic Quenching 6.1.5. Response to Heavy Ions 6.1.6. Kinetics of Quenching 6.2. Surface Quenching Effects 6.3. Radiation Damage 6.3.1. Crystals 6.3.2. Plastic Solutions 6.3.3. Liquid Solutions 6.4. The Scintillation and Fluorescence Decay of Pure Crystals 6.4.1. Theory 6.4.2. Anthracene 6.4.3. Other Crystals 6.5. The Slow Scintillation Component 6.5.1. Review of Experimental Data 6.5.2. Theories of Origin 6.6. The Scintillation Decay of Solutions 6.6.1. Theory of Binary Solutions 6.6.2. Review of Experimental Data 6.6.3. Ternary Solutions 6.7. References Chapter 7. Organic Crystal Scintillators 7.1. Introduction 7.2. Anthracene 7.2.1. Crystal Structure 7.2.2. Absorption Spectra 7.2.3. Anthracene as a Scintillator Standard 7.2.4. Purification and Crystal Growth 7.2.5. Scintillation Efficiency 7.2.6. Other Data 7.3. Other Organic Crystals 7.3.1. Relative Efficiencies 7.3.2. Scintillation Decay Times 7.3.3. trans-Stilbene 7.3.4. Diphenylacetylene 7.3.5. p-Terphenyl 7.3.6. p-Quaterphenyl 7.3.7. 1,4-Diphenylbutadiene 7.4. Mixed Organic Crystals and Exciton Migration 7.4.1. Review of Experimental Studies 7.4.2. Energy Transfer and Exciton Migration 7.4.3. Response Anisotropy 7.4.4. Exciton Lifetime 7.4.5. Low Temperature Behavior 7.4.6. Radiative Transfer 7.4.7. Mixed Crystal Scintillators 7.5. References Chapter 8. Organic Liquid Scintillators 8.1. Introduction 8.2. Pure Solvents 8.3. Mixed Solvents and Loading with Other Compounds 8.3.1. Mixed Solvents 8.3.2. Naphthalene as an Additive 8.3.3. Boron Loading 8.3.4. Dioxane Mixtures 8.4. Primary Solutes 8.4.1. Initial Studies 8.4.2. The Oxazoles, Oxadiazoles and Related Compounds 8.4.3. The Substituted p-Oligophenylenes 8.5. Secondary Solutes 8.6. Spectral Effects 8.7. Oxygen Quenching 8.7.1. Experimental Studies 8.7.2. Elimination of Oxygen 8.8. Temperature Effects 8.9. Scintillation Decay Times 8.10. Energy Migration and Transfer 8.10.1. Initial Studies 8.10.2. Ultraviolet Excitation Studies 8.10.3. PPO-Xylene Solutions 8.10.4. Impurity Quenching Studies 8.10.5. Dipole-Dipole Interaction 8.10.6. Effect of Molecular Diffusion 8.10.7. Description of Solvent-Solute Transfer Process 8.10.8. The Domain Hypothesis 8.10.9. Solute-Solute Energy Transfer 8.11. Concentration Quenching and Dimer Formation 8.12. References Chapter 9. Organic Plastic Scintillators 9.1. Introduction 9.2. Preparation of Plastic Scintillators 9.3. Solvents 9.3.1. Relative Efficiencies 9.3.2. Mixed Solvents 9.3.3. Influence of Molecular Weight 9.4. Primary and Secondary Solutes 9.5. Optical Transmission 9.6. Temperature Effects 9.7. Loading with Heavy Elements 9.8. Scintillation Decay Times 9.9. Organic Glasses 9.10. Energy Transfer 9.10.1. Radiative and Non-radiative Transfer 9.10.2. Non-radiative Transfer and Migration 9.10.3. Impurity Quenching Studies 9.10.4. Polymer Chain Attachment 9.10.5. Stereo-isomerism 9.11. Molecular Structure and Scintillation Properties 9.11.1. Solvents 9.11.2. Solutes 9.12. References Chapter 10. Applications of Organic Scintillators 10.1. Properties and Uses of Organic Scintillators 10.2. β-Particle Detection and Spectrometry 10.2.1. β-Particle Detection 10.2.2. Internal-sample Liquid Scintillation Counting 10.2.3. Incorporation of the Specimen 10.2.4. Low-level Counting Systems 10.2.5. β-Particle Spectrometry 10.2.6. Scintillators in Magnetic Spectrometers 10.3. γ-Ray Detection and Spectrometry 10.3.1. γ-Ray Spectrometry 10.3.2. γ-Ray Detection 10.4. Fast Neutron Detection and Spectrometry 10.4.1. Single Scintillator Spectrometry 10.4.2. Neutron-γ-Ray Discrimination 10.4.3. Heterogeneous Scintillators for η/γ Discrimination 10.4.4. The "Twin" Fast Neutron Detector 10.4.5. Pulse Shape Discrimination 10.5. Coincidence Methods 10.5.1. Introduction 10.5.2. Coincidence Circuits and Timing Devices 10.5.3. Absolute Source Calibration 10.5.4. γ-Ray Angular Correlation and Polarization Studies 10.5.5. Positron Annihilation Studies 10.5.6. Delayed Coincidences and Lifetimes of Excited States of Nuclei 10.5.7. Coincidence β-Particle and γ-Ray Spectrometry 10.5.8. Coincidence Spectrometry of Fast Neutrons 10.5.9. Time-of-flight Spectrometry of Fast Neutrons 10.6. High Energy and Elementary Particle Studies 10.6.1. Large Scintillators 10.6.2. Counter Telescopes 10.6.3. Scintillation Chambers 10.6.4. Neutron and Neutrino Studies 10.7. References Chapter 11. The Scintillation Process in Inorganic Crystals—II 11.1. The Scintillation Response to γ-Rays and Electrons 11.1.1. Sodium Iodide (Thallium) 11.1.2. Cesium Iodide (Thallium) 11.1.3. Discussion 11.2. The Scintillation Response to Heavy Ionizing Particles 11.2.1. Sodium Iodide (Thallium) 11.2.2. Effect of Tl Concentration 11.2.3. Cesium Iodide (Thallium) 11.2.4. Other Alkali Halides 11.3. Theory of the Scintillation Response 11.3.1. Review of the Data 11.3.2. The Murray-Meyer Model 11.3.3. Comparison with Organic Scintillators 11.3.4. The Effect of δ-Rays 11.4. The Scintillation Rise and Decay 11.4.1. Sodium Iodide (Thallium) 11.4.2. Temperature Dependence in NaI(Tl) and "Pure" NaI 11.4.3. Cesium Iodide (Thallium) 11.4.4. Other Alkali Halides 11.5. Effect of Temperature on Scintillation Efficiency 11.5.1. Theoretical Model 11.5.2. "Pure" Alkali Halides 11.5.3. Sodium Iodide (Thallium) 11.5.4. Cesium Iodide (Thallium) 11.5.5. An Approach to a General Theory 11.6. References Chapter 12. Alkali Halide Crystals Scintillators and Their Applications 12.1. Sodium Iodide (Thallium) 12.1.1. Review of Previous Data 12.1.2. Crystal Preparation 12.1.3. Scintillation Efficiency 12.1.4. The Photon Interaction Ratio 12.1.5. Scattered Radiation 12.1.6. The Photon Escape Peaks 12.1.7. The Iodine Escape Peak 12.1.8. X-Ray Spectrometry 12.1.9. The Photo-fraction and y-Ray Detection Efficiency 12.1.10. γ-Ray Spectrometry 12.1.11. The Spectrometer Response Function 12.1.12. Pulse Amplitude Analyzers 12.1.13. Total Absorption and Summing Spectrometers 12.1.14. Anti-coincidence Shielding 12.1.15. Coincidence Spectrometers 12.1.16. Neutron Absorption 12.1.17. Human γ-Ray Spectrometry 12.1.18. Detection of High-energy γ-Rays and Electrons 12.1.19. Other Applications 12.2. Cesium Iodide (Thallium) 12.2.1. Review of Previous Data 12.2.2. Crystal Preparation 12.2.3. Scintillation Efficiency and Emission Spectrum 12.2.4. γ-Ray Spectrometry 12.2.5. Heavy Particle and Fast Neutron Spectrometry 12.2.6. Particle Discrimination 12.2.7. Dual Scintillator Systems 12.3. Lithium Iodide Phosphors 12.3.1. Slow Neutron Detection 12.3.2. Fast Neutron Spectrometry 12.4. Potassium Iodide (Thallium) 12.5. "Pure" Alkali Halides 12.5.1. Sodium Iodide 12.5.2. Cesium Iodide 12.5.3. Low Temperature Studies 12.6. Other Alkali Halides 12.6.1. Rubidium Iodide (Thallium) 12.6.2. Cesium Fluoride 12.6.3. Cesium Bromide (Thallium) 12.6.4. Other Materials 12.7. References Chapter 13. Other Inorganic Solid Scintillators and Their Applications 13.1. Zinc Sulphide 13.1.1. Detection and Scintillation Efficiencies 13.1.2. Scintillation Decay 13.1.3. Heavy Particle Detection 13.1.4. Scintillation Response 13.1.5. Radiation Damage 13.1.6. Fast Neutron Detection 13.1.7. Slow Neutron Detection 13.2. Cadmium Sulphide 13.3. The Tungstate Phosphors 13.4. Inorganic Glass Scintillators 13.4.1. Composition and Scintillation Efficiency 13.4.2. Slow Neutron Detection 13.5. Other Inorganic Scintillators 13.5.1. Boron Compounds 13.5.2. Diamond 13.5.3. Scintillators and Phosphors Containing Various Elements 13.6. References Chapter 14. Gas Scintillators and Their Applications 14.1. Nitrogen and Air 14.1.1. Introduction 14.1.2. Emission Spectrum 14.1.3. Scintillation Efficiency and Collisional Quenching 14.1.4. Scintillation Decay Times 14.1.5. Background Luminescence from Air, Glass and Quartz 14.2. The Inert Gases 14.2.1. Introduction 14.2.2. The Primary Processes 14.2.3. Emission Spectra 14.2.4. Scintillation Decay Times 14.2.5. The Effect of Nitrogen 14.2.6. Fluorescent Converters and Practical Scintillation Efficiencies 14.2.7. Mixtures of Inert Gases 14.2.8. Scintillation Response to Different Particles 14.2.9. Applications of Gas Scintillators 14.2.10. Light Amplification by an Electric Field 14.2.11. High-pressure Gas Scintillators 14.2.12. Neutron Detection and Spectrometry 14.3. Liquid and Solid Inert Elements 14.3.1. Scintillation Properties 14.3.2. Liquid Helium 14.3.3. Neutron Polarimetry 14.4. References Chapter 15. Conclusion References Chapter 16. Postscript 3.7.1. The Primary Processes in Organic Materials 3.7.3. Internal Conversion in Organic Materials 5.1.5. Light Guides and Couplers 5.3.9. Photomultiplier Fatigue 5.3.12. Reduction of Effect of Dark Noise 5.3.14. Commercial Photomultipliers 5.4. Pulse Amplitude Resolution 5.5.4. Statistics and Time Resolution 5.5.5. Effect of Anode Pulse Shape on Pulse Amplitude Resolution 6.1. Scintillation Response of Anthracene to Different Ionizing Radiations 6.3.3. Radiation Damage of Liquid Solutions 6.4. The Scintillation Decay of Organic Crystals 6.5. The Slow Scintillation Component in Organic Systems 7.3. Scintillation and Fluorescence Efficiencies of Organic Crystals 7.4. Mixed Organic Crystals 7.4.3. Scintillation Response Anisotropy 8.2. Liquid Scintillator Solvents 8.4. Liquid Scintillator Solutes 8.9. Liquid Scintillator Decay Times 8.10. Energy Migration and Transfer 8.11. Dimer Formation 9.2. Preparation of Plastic Scintillators 9.8. Plastic Scintillator Decay Times 9.10. Energy Transfer in Plastic Scintillators 10.2. β-Particle Detection and Spectrometry 10.5. Coincidence Methods 11.1. Scintillation Response of NaI(Tl) and Cs(Tl) to X-Rays and γ-Rays 11.4.3. Temperature Dependence of Decay Time and Efficiency of CsI(Tl) and "Pure" Csl 12.1.5. Scattered Radiation in γ-Ray Spectrometry 12.1.9. The Photo-fraction and γ-Ray Detection Efficiency 12.1.13. Total Absorption and Summing Spectrometers 12.1.14. Anti-coincidence Shielding 12.1.15. Sum-coincidence Spectrometry 12.2.5. Heavy Particle Spectrometry 12.2.7. Dual Scintillator Systems 13.1.6. Intermediate Energy Neutron Detection 13.4. Inorganic Glass Scintillators 13.5. Other Inorganic Scintillators 14.2. Inert Gases 14.2.10. Light Amplification by an Electric Field 14.3.2. Liquid Helium and Argon References Author Index Volumes Published in the Series on Electronics and Instrumentation
Published: January 1, 1964
eBook ISBN: 9781483156064