Steels
Structure, Properties, and Design
- 5th Edition - January 11, 2024
- Authors: H.K.D.H. Bhadeshia, R.W.K. Honeycombe
- Language: English
- Hardback ISBN:9 7 8 - 0 - 4 4 3 - 1 8 4 9 1 - 8
- eBook ISBN:9 7 8 - 0 - 4 4 3 - 1 8 4 9 0 - 1
Steels: Structure, Properties and Design is an essential text and reference, providing indispensable foundational content for researchers, metallurgists, and engineers in industry… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteSteels: Structure, Properties and Design is an essential text and reference, providing indispensable foundational content for researchers, metallurgists, and engineers in industry and academia. The book provides inspiring content for undergraduates, yet has a depth that makes it useful to researchers. Steels represent the most used metallic materials, possessing a wide range of structures and properties. By examining the properties of steels in conjunction with structure, the book provides a valuable description of the development and behavior of these materials- the very foundation of their widespread use. The new edition has been thoroughly revised and updated with 2 new chapters, expanded content throughout,and yet it retains its clear writing style, extensive bibliographies, and real-life examples. One of the new chapters deals with the additive manufacture of steels with a focus on structure and properties. The other has visionary applications of steel that lead to a dramatic reduction of the carbon dioxide burden, within a short period of time, and without compromising the quality of life that depends on steels.
- Revised edition features a new chapter on selection of steels, a new chapter on sustainable use of steels, expanded coverage of surface treatment of steels, crystallographic textures, metallurgical aspects of additive manufacturing of steels, and much more
- Includes derivations with important equations so that students from a broad range of subjects can appreciate the issues without being bogged down in mathematics
- Presents micrographs and figures that reflect the resolution and capabilities of modern instruments
Metallurgists; materials engineers and researchers in the steel industry; senior undergraduate students and postgraduates in materials science, physical metallurgy, and mechanical engineering;
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Biography
- Preface
- 1: Iron and its interstitial solutions
- 1.1. Introduction
- 1.2. Allotropes of pure iron
- 1.2.1. Thin films and isolated particles
- 1.2.2. Amorphous iron
- 1.3. Austenite to ferrite transformation
- 1.3.1. Mechanisms of transformation
- 1.4. Carbon, nitrogen and hydrogen in solution
- 1.4.1. Solubility in α- and γ-iron
- 1.4.2. Diffusion of solutes in iron
- 1.4.3. Practical consequences of diffusion
- 1.5. Summary
- 2: Strengthening of iron and its alloys
- 2.1. Introduction
- 2.2. Work hardening
- 2.3. Interstitial solid-solution hardening or softening
- 2.3.1. The yield point
- 2.3.2. Role of interstitial elements in yield phenomena
- 2.3.3. Strengthening at large interstitial concentrations
- 2.3.4. Interstitial-solution softening
- 2.4. Substitutional-solution hardening and softening
- 2.5. Grain size
- 2.5.1. Hall–Petch effect
- 2.5.2. Nanostructured steels
- 2.6. Dispersion strengthening
- 2.7. Order strengthening
- 2.7.1. Aluminides
- 2.8. Overall strength
- 2.9. Some practical aspects
- 2.10. Limits to strength
- 2.10.1. Theoretical strength
- 2.11. Hundreds of times stronger than steel
- 2.12. Ten billion times stronger than steel
- 2.13. Summary
- 3: Iron-carbon equilibrium and plain carbon steels
- 3.1. Iron-carbon equilibrium phase diagram
- 3.2. Austenite-ferrite transformation
- 3.3. Austenite-cementite transformation
- 3.4. Kinetics of the γ→α transformation
- 3.4.1. Growth kinetics of ferrite
- 3.5. Widmanstätten ferrite
- 3.5.1. Morphology
- 3.5.2. Shape change
- 3.5.3. Growth kinetics of Widmanstätten ferrite
- 3.5.4. Summary
- 3.6. Austenite-pearlite reaction
- 3.6.1. The morphology of pearlite
- 3.6.2. The crystallography of pearlite
- 3.6.3. Kinetics of pearlite growth
- 3.6.4. Divorced pearlite
- 3.6.5. Overall kinetics of pearlite formation
- 3.6.6. The strength of pearlite
- 3.7. Ferrite-pearlite steels
- 3.8. Summary
- 4: Solutes that are substitutes for iron
- 4.1. General principles
- 4.2. Alloying elements: γ and α phase fields
- 4.3. Distribution of alloying elements in steels
- 4.4. Alloying & kinetics of γ/α transformation
- 4.4.1. Effect of alloying elements on the ferrite reaction
- 4.4.2. Effect of alloying elements on the pearlite reaction
- 4.4.3. Alloy pearlite
- 4.5. Structural changes due to alloying additions
- 4.5.1. Ferrite/alloy carbide aggregates
- 4.5.2. Alloy carbide fibres and laths
- 4.5.3. Interphase precipitation
- 4.5.4. Precipitation in supersaturated ferrite
- 4.6. Transformation diagrams for alloy steels
- 4.7. Light steels
- 4.8. Summary
- 5: Formation of martensite
- 5.1. Introduction
- 5.2. General characteristics
- 5.2.1. Habit plane
- 5.2.2. Orientation relationships
- 5.2.3. Structure of the interface
- 5.2.4. The shape deformation
- 5.3. Crystal structure of martensite
- 5.4. Crystallography of martensitic transformations
- 5.5. Morphology of ferrous martensites
- 5.6. Kinetics of martensitic transformation
- 5.6.1. Nucleation of martensite
- 5.6.2. Growth of martensite
- 5.6.3. Overall athermal-transformation kinetics
- 5.6.4. Effect of alloying elements
- 5.6.5. Stress-induced transformation
- 5.6.6. Effect of austenite grain size
- 5.6.7. Effect of plastic strain on martensitic transformation
- 5.6.8. Thermal stabilisation
- 5.7. Strength of martensite
- 5.8. Shape memory effect
- 5.9. Summary
- 6: Bainite
- 6.1. Introduction
- 6.2. Upper bainite (≈400–550∘C)
- 6.3. Lower bainite (≈250–400∘C)
- 6.4. The shape deformation
- 6.5. Carbon in bainite
- 6.6. Kinetics
- 6.7. Transition from upper to lower bainite
- 6.8. Granular bainite
- 6.9. Tempering of bainite
- 6.10. Role of alloying elements
- Carbon
- Other alloying elements
- 6.11. Use of bainitic steels
- 6.12. Summary
- 7: Acicular ferrite
- 7.1. Introduction
- 7.2. Microstructure
- 7.3. Mechanism of transformation
- 7.4. Inclusions as heterogeneous nucleation sites
- 7.5. Nucleation of acicular ferrite
- 7.5.1. Lattice matching theory
- 7.5.2. Other possibilities
- 7.6. Summary
- 8: Heat treatment of steels: hardenability
- 8.1. Introduction
- 8.2. Use of TTT and continuous cooling diagrams
- 8.3. Hardenability testing
- 8.3.1. The Grossman test
- 8.3.2. The Jominy end quench test
- 8.4. Effect of grain size and chemical composition on hardenability
- 8.5. Quenching stresses and quench cracks
- 8.6. High-speed, large-scale heat treatment
- 8.7. Large-scale batch heat-treatment
- 8.8. Cryogenic treatment
- 8.9. Summary
- 9: Tempering of martensite
- 9.1. Introduction
- 9.2. Tempering: cementite and transition carbides
- 9.3. Stages of tempering
- 9.3.1. Tempering: stage 1
- 9.3.2. Tempering: stage 2
- 9.3.3. Tempering: stage 3
- 9.3.4. Tempering: stage 4
- 9.4. Role of carbon content
- 9.5. Mechanical properties of tempered martensite
- 9.6. Tough, untempered, high-carbon martensite
- 9.7. Steels with strong carbide-forming elements
- 9.7.1. Effect of alloying elements on the formation of iron carbides
- 9.7.2. The formation of alloy carbides: secondary hardening
- 9.7.3. Nucleation and growth of alloy carbides
- 9.7.4. Tempering of steels containing vanadium
- 9.7.5. Tempering of steels containing chromium
- 9.7.6. Tempering of steels containing molybdenum and tungsten
- 9.7.7. Complex alloy steels
- 9.7.8. Mechanical properties of tempered alloy steels
- 9.7.9. Mechanical properties: hydrogen trapping
- 9.8. Maraging steels
- 9.8.1. TRIP-assisted maraging steels
- 9.9. Summary
- 10: Thermomechanical treatment
- 10.1. Introduction
- 10.2. Controlled rolling of low-alloy steels
- 10.2.1. General
- 10.2.2. Grain size control during controlled rolling
- 10.2.3. Niobium atom clusters
- 10.2.4. Minimum achievable grain size
- 10.2.5. Dispersion strengthening during controlled rolling
- 10.2.6. Strength of microalloyed steels: an overall view
- 10.3. Dual-phase steels
- 10.4. TRIP-assisted steels
- 10.4.1. Low- or zero-silicon TRIP-assisted steels
- 10.4.2. Galvanising of TRIP-assisted steels
- 10.5. TWIP steels
- 10.6. Thermomechanically treated industrial steels
- 10.7. Ausforming
- 10.8. Summary
- 11: Embrittlement and fracture
- 11.1. Introduction
- 11.2. Cleavage fracture in iron and steel
- 11.3. Factors influencing the onset of cleavage fracture
- 11.4. Criteria for the ductile-brittle transition
- 11.5. Practical aspects of brittle fracture
- 11.6. Hydrogen embrittlement
- 11.6.1. Prevention of hydrogen embrittlement
- 11.7. Attack by high-pressure hydrogen
- 11.8. Intergranular embrittlement
- 11.8.1. Temper embrittlement
- 11.9. Irradiation embrittlement
- 11.10. Ductile or fibrous fracture
- 11.10.1. General
- 11.10.2. Role of inclusions in ductility
- 11.10.3. Role of carbides in ductility
- 11.10.4. Overheating, burning
- 11.10.5. Liquid metal embrittlement
- 11.11. Summary
- 12: Stainless steel
- 12.1. Introduction
- 12.2. Not always corrosion resistant
- 12.3. The iron–chromium–nickel system
- 12.3.1. Nitrogen
- 12.4. Schaeffler diagram
- 12.5. Chromium-rich carbide in Cr-Ni austenitic steels
- 12.6. Precipitation of niobium and titanium carbides
- 12.7. Nitrides in austenitic steels
- 12.8. Intermetallic precipitation in austenite
- 12.9. Austenitic steels in practical applications
- 12.10. Oxidation resistant stainless steel
- 12.11. Duplex and ferritic stainless steels
- 12.12. Mechanically alloyed stainless steels
- 12.13. Transformation of metastable austenite
- 12.14. Summary
- 13: Weld microstructures
- 13.1. Introduction
- 13.2. Fusion zone
- 13.2.1. Weld solidification
- 13.2.2. As-deposited microstructure
- 13.2.3. Allotriomorphic ferrite
- 13.2.4. Widmanstätten ferrite and acicular ferrite
- 13.2.5. Sensitivity to carbon
- 13.3. Heat-affected zone
- 13.3.1. Heat flow
- 13.3.2. Microstructural zones
- 13.3.3. Coarse-grained austenite
- 13.3.4. Fine-grained austenite zone
- 13.3.5. Partially austenitic regions and local brittle zones
- 13.4. Friction stir welding of steels
- 13.5. Summary
- 14: Additive manufacture
- 14.1. Introduction
- 14.2. Macrostructure
- 14.3. Powders
- 14.4. Thermomechanical processing of additively manufactured steel
- 14.5. Hybrid processing
- 14.6. Microstructure
- 14.7. Composites
- 14.8. Tuned damper
- 14.9. Summary
- 15: Nanostructured steels
- 15.1. Introduction
- 15.2. Why yearn for exceedingly fine grains?
- 15.3. Production of nanostructured steel
- 15.3.1. Shape preserving deformations
- 15.3.2. Shape altering deformations
- 15.3.3. Nanostructure without deformation
- 15.4. Detrimental nanostructures in steels
- 15.5. Summary
- 16: Mathematical modelling
- 16.1. Introduction
- 16.2. Example 1: alloy design
- 16.2.1. Calculation of the T0 curve
- 16.2.2. The improvement in toughness
- 16.2.3. Precision and limits
- 16.3. Example 2: properties of mixed microstructures
- 16.3.1. Calculation of the strength of individual phases
- 16.3.2. Iron and substitutional solutes
- 16.3.3. Carbon
- 16.3.4. Dislocations
- 16.3.5. Lath size
- 16.3.6. Martensite composition and transformation temperature
- 16.3.7. Strength of mixed microstructures
- 16.4. Methods
- 16.4.1. Electron theory
- 16.4.2. Phase diagram calculations and thermodynamics
- 16.5. Kinetics
- 16.5.1. Finite difference method
- 16.6. Finite element method
- 16.7. Neural networks
- 16.8. Summary
- 17: Visionary use of steels (CO2↓)
- 17.1. Introduction
- 17.2. Buildings
- 17.2.1. Improved steel
- 17.2.2. Building with microalloyed steel
- 17.3. Coral reef regeneration
- 17.4. Starship
- 17.5. Robust ships
- 17.6. Summary
- Acronyms
- Nomenclature
- Index
- No. of pages: 550
- Language: English
- Edition: 5
- Published: January 11, 2024
- Imprint: Butterworth-Heinemann
- Hardback ISBN: 9780443184918
- eBook ISBN: 9780443184901
HB
H.K.D.H. Bhadeshia
RH