Spintronics
- 1st Edition, Volume 82 - November 7, 2008
- Editors: Tomasz Dietl, David D. Awschalom, Maria Kaminska, Hideo Ohno
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 4 4 9 5 6 - 2
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 9 1 4 2 1 - 3
This new volume focuses on a new, exciting field of research: Spintronics, the area also known as spin-based electronics. The ultimate aim of researchers in this area is to de… Read more
![Spintronics](/_next/image?url=https%3A%2F%2Fsecure-ecsd.elsevier.com%2Fcovers%2F80%2FTango2%2Flarge%2F9780080449562.jpg&w=384&q=75)
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteThis new volume focuses on a new, exciting field of research: Spintronics, the area also known as spin-based electronics. The ultimate aim of researchers in this area is to develop new devices that exploit the spin of an electron instead of, or in addition to, its electronic charge.
In recent years many groups worldwide have devoted huge efforts to research of spintronic materials, from their technology through characterization to modeling. The resultant explosion of papers in this field and the solid scientific results achieved justify the publication of this volume. Its goal is to summarize the current level of understanding and to highlight some key results and milestones that have been achieved to date.
Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high-speed memory, logic and photonic devices. In addition, development of novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high-temperature electronics is anticipated.
- Spintronics has emerged as one of the fastest growing areas of research
- This text presents an in-depth examination of the most recent technological spintronic developments
- Includes contributions from leading scholars and industry experts
Awschalom, University of California, Santa Barbara, Single spin coherence in Semiconductors
2. Jairo Sinova, Texas A&M University, and A.H. MacDonald, University of Texas at Austin, Theory of spin-orbit effects in semiconductors
3. Kin Man Yu, Tomasz Wojtowicz, Wladek Walkiewicz, Xinyu. Liu and Jacek K. Furdyna, University of Notre Dame and Lawrence Berkeley National Lab, Fermi level effects on Mn incorporation in III-Mn-V ferromagnetic semiconductors .
4. Tomas Jungwirth, Bryan Gallagher and J. Wunderlich, University of Nottingham, Transport properties of ferromagnetic semiconductors
5. Fumihiro Matsukura, Daichi Chiba and Hideo Ohno, Tohoku University, Spintronic properties of ferromagnetic semiconductors
6. Charles Gould, Georg Schmidt and Laurens Molenkamp, Wurzburg University, Spintronic nanodevices
7. Joel Cibert, Lucien Besombes, David Ferrand and Henri Mariette, Laboratoire Louis Néel, Grenoble, Quantum structures of II-VI diluted magnetic semiconductors
8. Agnieszka Wolos and Maria Kaminska, University of Warsaw, Magnetic impurities in wide band-gap III-V semiconductors
9. Tomasz Dietl, Institute of Physics, Polish Academy of Science, University of Warsaw Exchange interactions and nano-scale phase separations in magnetically doped semiconductors
10. Hiroshi Katayama-Yoshida, Kazunori Sato, Tetsuya Fukushima, Masayuki Toyoda, Hidetoshi Kizaki and An van Dinh , Osaka University Computational Nano-materials Design for the Wide Band-gap and High-Tc Semiconductor Spintronics
11. Masaaki Tanaka, The University of Tokyo, Properties and functionalities of hybrid and composite structures
- No. of pages: 536
- Language: English
- Edition: 1
- Volume: 82
- Published: November 7, 2008
- Imprint: Academic Press
- Hardback ISBN: 9780080449562
- eBook ISBN: 9780080914213
TD
Tomasz Dietl
DA
David D. Awschalom
MK
Maria Kaminska
HO