Skip to main content

Source Separation and Machine Learning

  • 1st Edition - October 16, 2018
  • Author: Jen-Tzung Chien
  • Language: English
  • Paperback ISBN:
    9 7 8 - 0 - 1 2 - 8 1 7 7 9 6 - 9
  • eBook ISBN:
    9 7 8 - 0 - 1 2 - 8 0 4 5 7 7 - 0

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine l… Read more

Source Separation and Machine Learning

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code needed.

Image of books

Institutional subscription on ScienceDirect

Request a sales quote

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.