Sensors, Circuits, and Systems for Scientific Instruments
Fundamentals and Front-Ends
- 1st Edition - December 5, 2024
- Author: Soumyajit Mandal
- Language: English
- Paperback ISBN:9 7 8 - 0 - 3 2 3 - 9 5 0 6 6 - 4
- eBook ISBN:9 7 8 - 0 - 3 2 3 - 9 5 0 6 7 - 1
Sensors, Circuits, and Systems for Scientific Instruments: Fundamentals and Front-Ends presents a unified treatment of modern measurement systems by integrating relevant knowledge… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteSensors, Circuits, and Systems for Scientific Instruments: Fundamentals and Front-Ends presents a unified treatment of modern measurement systems by integrating relevant knowledge in sensors, circuits, signal processing, and machine learning. It also presents detailed case studies of several real-life measurement systems to illustrate how theoretical analysis and high-level designs are translated into working scientific instruments.
The book is meant for upper-level undergraduate and beginning graduate students in electrical and computer engineering, applied physics, and biomedical engineering. It is designed to fill a gap in the market between books focused on specific components of measurement systems (semiconductor devices, analog circuits, digital signal processing, etc.) and books that provide a high-level "survey" or "handbook"-type overview of a wide range of sensors and measurement systems.
- Develops a unified treatment of modern scientific instruments by combining knowledge of high-performance sensors, semiconductor devices, circuits, signal processing, and embedded computing
- Focuses on fundamental concepts in precision sensing and interface circuitry (accuracy, precision, linearity, noise, etc.) and their impact on system-level performance instead of presenting a "laundry list" of sensor types
- Introduces readers to the indispensable role of signal detection theory, pattern recognition, and machine learning for modern scientific instrumentation
- Presents multiple case studies and examples to demonstrate how theoretical concepts are translated into real-life measurement systems
Senior-level undergraduates and beginning graduate students in electrical and computer engineering, applied physics, biomedical engineering, and related disciplines / Roughly 125 US schools offer an bioinstrumentation course taken by 9,000 students, while another 30 US schools offer an electronic instrumentation course. It is estimated that the global number is approximately double
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Preface
- Acknowledgements
- Chapter 1: Review of linear systems
- 1.1. Introduction
- 1.2. Transfer functions
- 1.2.1. Continuous- and discrete-time systems
- 1.2.2. Stability
- 1.2.3. Invertibility
- 1.3. Lumped systems
- 1.4. Distributed systems
- 1.4.1. Need for distributed models
- 1.4.2. Transmission lines
- 1.4.3. Impedance matching
- 1.4.4. RC transmission lines
- 1.4.5. Lumped transmission lines
- 1.5. Multi-dimensional systems
- 1.6. Summary and further reading
- Exercises
- Chapter 2: Principles of measurement-system design
- 2.1. Introduction
- 2.2. Fundamental properties of measurements
- 2.2.1. Structure of measurement systems
- 2.2.2. Properties of transducers
- 2.2.3. Energy measurements
- 2.3. Theory of classical measurements
- 2.3.1. Bayesian inference
- 2.3.2. Information theory
- 2.4. Feedback systems
- 2.4.1. Feedback block diagrams and Black's formula
- 2.4.2. Effects of feedback on noise and disturbances
- 2.4.3. Effects of feedback on impedance
- 2.4.4. Effects of feedback on bandwidth
- 2.4.5. Implementing inverse functions
- 2.4.6. Stabilizing unstable systems
- 2.4.7. Limitations of feedback
- 2.4.8. State-space models
- 2.5. Design of feedback controllers
- 2.5.1. Root-locus analysis
- 2.5.2. Reduced gain compensation
- 2.5.3. Dominant pole compensation
- 2.5.4. Lag compensation
- 2.5.5. Lead compensation
- 2.5.6. Lead–lag and PID control
- 2.5.7. Minor loop compensation
- 2.5.8. State-space control
- 2.6. Summary and further reading
- Exercises
- Chapter 3: Review of solid-state device physics
- 3.1. Introduction
- 3.2. Fundamentals of carrier transport
- 3.3. The elastic resistor
- 3.4. Boltzmann transport equation (BTE)
- 3.5. Conductance
- 3.6. Band structures
- 3.7. Summary and further reading
- Exercises
- Chapter 4: Models of electronic devices
- 4.1. Introduction
- 4.2. Resistors
- 4.2.1. General properties
- 4.2.2. Drude model
- 4.2.3. Thermal effects
- 4.2.4. Nanoscale resistors
- 4.3. Capacitors
- 4.3.1. General properties
- 4.3.2. Dielectric relaxation
- 4.3.3. Dielectric absorption
- 4.4. Inductors
- 4.4.1. Solenoids
- 4.4.2. Planar spirals
- 4.4.3. Skin effect
- 4.4.4. Proximity effect
- 4.4.5. Core losses
- 4.4.6. Winding capacitance and SRF
- 4.4.7. Kinetic inductance
- 4.5. Transformers
- 4.5.1. Mutual inductance
- 4.5.2. Basic properties
- 4.5.3. Non-ideal behavior
- 4.6. Diodes
- 4.6.1. P-N junction diodes
- 4.6.2. Photodiodes
- 4.6.3. PIN diodes
- 4.6.4. Step-recovery diodes
- 4.6.5. Schottky diodes
- 4.7. Bipolar junction transistors
- 4.7.1. Basic operation
- 4.7.2. Ebers–Moll model
- 4.7.3. Non-ideal effects
- 4.7.4. Small-signal equivalent circuit
- 4.7.5. Heterojunction bipolar transistors
- 4.8. Metal-oxide-semiconductor field-effect transistors (MOSFETs)
- 4.8.1. Basic operation
- 4.8.2. Subthreshold MOSFETs
- 4.8.3. Above-threshold MOSFETs
- 4.8.4. Non-ideal effects
- 4.8.5. Small-signal equivalent circuit
- 4.9. Junction field-effect transistors (JFETs)
- 4.10. Summary and further reading
- Exercises
- Chapter 5: Models of sensors and actuators
- 5.1. Introduction
- 5.2. Magnetic devices
- 5.2.1. Magnetic circuits
- 5.2.2. Electromagnets
- 5.2.3. Permanent magnets
- 5.2.4. Halbach arrays
- 5.3. Mechanical systems
- 5.3.1. Equivalent-circuit models
- 5.3.2. Piezoelectric devices
- 5.3.3. Pyroelectricity and ferroelectricity
- 5.3.4. Microelectromechanical systems (MEMS)
- 5.4. Thermal sensors
- 5.4.1. Definition of temperature
- 5.4.2. Resistance thermometers
- 5.4.3. Thermocouples
- 5.5. Gas sensors
- 5.5.1. Electrochemical cells
- 5.5.2. Chemiresistors
- 5.5.3. Mechanical detectors
- 5.5.4. Calorimeters
- 5.6. Acoustic sensors
- 5.6.1. Sound measurements
- 5.6.2. Dynamic microphones
- 5.6.3. Piezoelectric microphones
- 5.6.4. Condenser microphones
- 5.7. Modeling and simulation methods
- 5.7.1. Sensors and actuators
- 5.7.2. Circuits
- 5.8. Summary and further reading
- Exercises
- Chapter 6: Noise in electronic devices
- 6.1. Introduction
- 6.2. Heat, temperature, and thermodynamics
- 6.3. Noise processes
- 6.3.1. Analysis of noise processes
- 6.3.2. Shot noise
- 6.3.3. Relationship to carrier transport
- 6.4. The resistor
- 6.5. The junction diode
- 6.6. Noise in BJTs
- 6.7. The subthreshold MOSFET
- 6.8. The above-threshold MOSFET
- 6.8.1. Noise from junction diodes
- 6.9. Noise calculations based on transit time
- 6.9.1. Drain-current noise in short-channel devices
- 6.9.2. Noise in moderate inversion
- 6.9.3. Noise in RF MOSFETs
- 6.10. Noise in JFETs
- 6.11. The resistor at high frequencies
- 6.11.1. Intuitive analysis
- 6.11.2. Modified analysis
- 6.12. The fluctuation–dissipation theorem
- 6.12.1. Main properties
- 6.12.2. Physically observable fluctuations
- 6.13. Noise in antennas
- 6.14. Flicker noise
- 6.14.1. MOSFET flicker noise
- 6.14.2. Low-frequency divergence
- 6.14.3. Experimental measurements
- 6.14.4. More experimental measurements
- 6.15. Noise in other transistors
- 6.16. Summary and further reading
- Exercises
- Chapter 7: Noise in circuits
- 7.1. Introduction
- 7.2. General considerations
- 7.3. Example 1: a passive RC low-pass filter
- 7.4. Example 2: a subthreshold photoreceptor
- 7.5. The equipartition theorem
- 7.5.1. A first-order RC circuit
- 7.5.2. A compressed spring
- 7.5.3. A moving pendulum
- 7.5.4. A spring–mass system
- 7.5.5. Caveats and limitations
- 7.6. Noise-analysis procedure
- 7.7. Example 3: a subthreshold OTA
- 7.8. Example 4: a switched-capacitor resistor
- 7.9. Example 5: passive mixers
- 7.10. Example 6: an active mixer
- 7.11. Example 7: a cascade of low-pass filters
- 7.12. Summary and further reading
- Exercises
- Chapter 8: Low-noise front-end design
- 8.1. Introduction
- 8.2. Receiver characteristics
- 8.3. Input-impedance matching
- 8.3.1. Single-element matching
- 8.3.2. Higher-order matching networks
- 8.3.3. Impedance matching of antennas
- 8.4. Input-referred noise models
- 8.5. Derivation of NF from two-port network parameters
- 8.5.1. Voltage gain of a two-port network
- 8.5.2. NF for a single two-port network
- 8.5.3. NF for cascaded two-port networks
- 8.6. Active impedance transformers
- 8.6.1. The Miller effect
- 8.6.2. Bootstrapping
- 8.6.3. Active damping circuits
- 8.6.4. Gyrators
- 8.7. High-impedance measurements
- 8.7.1. Choice of circuit architecture
- 8.7.2. Noise analysis
- 8.7.3. Switched-integrator electrometers
- 8.8. Summary and further reading
- Exercises
- Chapter 9: Precision circuit techniques
- 9.1. Introduction
- 9.2. Low-noise amplifier (LNA) design
- 9.2.1. Major LNA topologies
- 9.2.2. Generalized noise matching
- 9.2.3. Noise matching for CMOS LNAs
- 9.3. Fully differential circuits
- 9.3.1. General properties
- 9.3.2. Common-mode feedback (CMFB)
- 9.4. Low-frequency noise-reduction methods
- 9.4.1. Autozeroing and correlated double sampling (CDS)
- 9.4.2. Chopper stabilization
- 9.4.3. Noise shaping
- 9.4.4. Mismatch shaping
- 9.5. Cross-spectrum noise measurements
- 9.6. Summary and further reading
- Exercises
- Chapter 10: Power supplies and thermal management
- 10.1. Introduction
- 10.2. DC power supplies
- 10.2.1. Batteries
- 10.2.2. Linear voltage regulators
- 10.2.3. Switching voltage regulators
- 10.2.4. Power-supply routing and filtering
- 10.3. Thermal analysis
- 10.3.1. Thermal-equivalent circuits
- 10.3.2. Passive cooling
- 10.3.3. Active cooling
- 10.3.4. Temperature-control loops
- 10.4. Summary and further reading
- Exercises
- Chapter 11: High-power front-end design
- 11.1. Introduction
- 11.2. Power amplifiers (PAs)
- 11.2.1. Basic characteristics of power amplifiers
- 11.2.2. Quasi-linear power amplifiers
- 11.2.3. Switching power amplifiers
- 11.3. PA linearization techniques
- 11.3.1. Power backoff
- 11.3.2. Corrective pre-distortion or post-distortion
- 11.3.3. Adaptive pre-distortion
- 11.3.4. Feedforward linearization
- 11.3.5. Envelope elimination and restoration (EER)
- 11.3.6. Polar feedback
- 11.3.7. Cartesian feedback
- 11.3.8. Linear amplification with non-linear components (LINC)
- 11.4. Power combiners
- 11.5. Summary and further reading
- Exercises
- Chapter 12: Front-end design for extreme environments
- 12.1. Introduction
- 12.2. High-temperature environments
- 12.2.1. Temperature-dependent transconductance
- 12.2.2. Temperature-dependent gate leakage current
- 12.2.3. Wide-band-gap (WBG) devices
- 12.2.4. High-temperature (HT) design techniques
- 12.2.5. Active thermoelectric (TE) cooling
- 12.3. Low-temperature environments
- 12.3.1. Low-temperature behavior of semiconductor devices
- 12.3.2. Low-temperature behavior of metals
- 12.4. High-radiation environments
- 12.4.1. Effects of radiation
- 12.4.2. Fault-tolerant system design
- 12.4.3. Hardware redundancy
- 12.5. Summary and further reading
- Exercises
- Chapter 13: Oscillators and frequency references
- 13.1. Introduction
- 13.2. Time–frequency measurements and clocks
- 13.2.1. Time and frequency standards
- 13.2.2. Basics of oscillators
- 13.2.3. Describing function analysis
- 13.2.4. Describing-function analysis of oscillators
- 13.3. Types of oscillators
- 13.3.1. RC oscillators
- 13.3.2. LC oscillators
- 13.3.3. Electromechanical oscillators
- 13.3.4. Frequency stability
- 13.4. Noise in oscillators
- 13.4.1. Why is phase noise bad?
- 13.4.2. LTI theory
- 13.4.3. LTV theory
- 13.4.4. Amplitude noise
- 13.4.5. Phase noise as a diffusive process
- 13.4.6. Improvements to the LTV theory
- 13.4.7. Jitter
- 13.4.8. Time-domain measures of oscillator stability
- 13.5. Long-term behavior of oscillators
- 13.5.1. Oscillator ageing
- 13.5.2. Power-law models of oscillator stability
- 13.6. Frequency-measurement instruments
- 13.6.1. Spectrum analyzers
- 13.6.2. Phase-noise analyzers
- 13.6.3. Frequency counters
- 13.7. Summary and further reading
- Exercises
- Chapter 14: Phase-locked loops
- 14.1. Introduction
- 14.2. Design of phase-locked loops
- 14.2.1. Loop compensation
- 14.2.2. Capture and lock ranges
- 14.2.3. Phase-detector design
- 14.2.4. Loop-filter design
- 14.2.5. VCO and CCO design
- 14.3. Noise in phase-locked loops
- 14.3.1. Phase noise
- 14.3.2. Time-domain jitter
- 14.3.3. Phase-noise measurements
- 14.4. Injection locking
- 14.4.1. Injection pulling and locking effects
- 14.4.2. Steady-state analysis
- 14.4.3. Locking dynamics
- 14.4.4. Extensions to Adler's equation
- 14.5. Frequency synthesizers
- 14.5.1. Integer-N synthesizers
- 14.5.2. Fractional-N synthesizers
- 14.6. All-digital PLLs
- 14.7. GPS-disciplined oscillators (GPSDOs)
- 14.8. Direct digital synthesis (DDS)
- 14.8.1. Basic operation
- 14.8.2. Quantization effects
- 14.8.3. Memory requirements
- 14.8.4. Reduction of quantization effects
- 14.9. Delay-locked loops
- 14.9.1. VCDL design
- 14.9.2. Linearized loop dynamics
- 14.9.3. Effects of supply noise
- 14.9.4. Phase-noise analysis
- 14.9.5. Practical design issues
- 14.9.6. DLL-based frequency multipliers
- 14.9.7. All-digital DLLs
- 14.10. Summary and further reading
- Exercises
- Chapter 15: Frequency standards
- 15.1. Introduction
- 15.2. General properties of atomic clocks
- 15.3. Rubidium frequency standards
- 15.3.1. Theory of operation
- 15.3.2. Design details
- 15.4. Caesium frequency standards
- 15.4.1. Caesium-beam clocks
- 15.4.2. Caesium-fountain clocks
- 15.5. Optical frequency standards
- 15.6. Summary and further reading
- Exercises
- Index
- No. of pages: 700
- Language: English
- Edition: 1
- Published: December 5, 2024
- Imprint: Academic Press
- Paperback ISBN: 9780323950664
- eBook ISBN: 9780323950671
SM