
Self-assembling Biomaterials
Molecular Design, Characterization and Application in Biology and Medicine
- 1st Edition - April 17, 2018
- Imprint: Woodhead Publishing
- Editors: Helena S. Azevedo, Ricardo M. P. da Silva
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 1 0 2 0 1 5 - 9
- eBook ISBN:9 7 8 - 0 - 0 8 - 1 0 2 0 1 2 - 8
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials sc… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteSelf-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field.
Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration.
Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community.
- Explores both theoretical and practical aspects of self-assembly in biomaterials
- Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials
- Examines the use of dynamic self-assembling biomaterials
Materials scientists, biomedical engineers, chemists working in the field of soft-matter, biomaterials and stem cells for tissue engineering
1. Self-assembling biomaterials: beginnings and progress over the past decade
Part 1 Molecular building blocks for self-assembly
2. Designing peptides for self-assembling biomaterials with controlled mechanical and biological performance
3. Engineering silk fibroin for hydrogel self-assembly
4. Elastin-like proteins – modular design for self-assembly
5. Sweet building blocks for self-assembling biomaterials with molecular recognition
6. Peptoid self-assembly and opportunities for biomaterials and biointerfaces
7. Lipid bolaamphiphiles for fabricating membrane-mimetic biomaterials
8. Self-assembling protein-DNA hybrid molecules as building blocks for complex biomaterials
9. Biomaterials based on ureido-pyrimidinone (UPy) and benzene-1,3,5-tricarboxamide (BTAs) supramolecular polymers
10. Self-assembling of biomaterials using host-guest chemistry
Part 2 Unique properties of self-assembling biomaterials: blurring the frontiers between biomaterials and biology
11. Adaptive supramolecular biomaterials through non-equilibrium self-assembly
Part 3 Nanoscale characterization of self-assembling biomaterials
12. Unveiling complex structure and dynamics in supramolecular biomaterials using super-resolution microscopy
13. Probing local molecular dynamics in self-assembling systems with electron paramagnetic resonance (EPR) spectroscopy
14. Small angle X-ray scattering (SAXS) to study spatial arrangement in self-assembled biomaterials
15. Studying nanoscale interactions in self-assembling systems through molecular simulations
Part 4 Mechanisms of self-assembly: controlling driving forces and boundaries for self-assembly across scales
16. Magnetic fields to align peptide assemblies and provide directionality in biomaterials
17. Using confined environments to control the shape and size of assemblies
18. Engineering dynamic self-assembling biomaterials at the interface
19. Enzymatic mediated self-assembly
Part 5 Applications of self-assembling biomaterials
20. Recreating stem cell niches using self-assembling biomaterials
21. Bioactive self-assembling scaffolds for regenerative medicine
22. Functionalization of self-assembling peptides for neural tissue engineering
23. Self-assembling biomaterials as nanocarriers for the targeted delivery of drugs for cancer
24. Self-assembling biomaterials for theranostic applications
25. Self-assembling artificial enzymes: biomaterial therapies for metabolic diseases
- Edition: 1
- Published: April 17, 2018
- No. of pages (Hardback): 612
- No. of pages (eBook): 612
- Imprint: Woodhead Publishing
- Language: English
- Hardback ISBN: 9780081020159
- eBook ISBN: 9780081020128
HA
Helena S. Azevedo
RS