Limited Offer
Raman Amplification in Fiber Optical Communication Systems
- 1st Edition - December 16, 2004
- Editors: Clifford Headley, Govind P. Agrawal
- Language: English
- Hardback ISBN:9 7 8 - 0 - 1 2 - 0 4 4 5 0 6 - 6
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 4 8 0 5 4 - 1
Optical fiber telecommunications depend upon light traveling great distances through optical fibers. As light travels it tends to disperse and this results in some degree of… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteOptical fiber telecommunications depend upon light traveling great distances through optical fibers. As light travels it tends to disperse and this results in some degree of signal loss. Raman amplification is a technique that is effective in any fiber to amplify the signal light as it travels through transmission fibers, compensating for inevitable signal loss.
- First comprehensive guide to Raman amplification, a technique whose use has exploded since 1997 in order to upgrade fiber capacity
- Accessible to professionals just entering the field of optical fiber telecommunications
- Detailed enough for experts to use as a reference
Practicing engineers in the telecommunications industry, especially optical fiber telecommunications. Graduate students in optical engineering and telecommunications engineering.
Introduction: Overview of an optical telecommunication system; What is an optical fiber'Stimulated Raman scattering (SRS) in optical fibers; Benefits of SRS; The emergence of Raman amplification. Stimulated Raman Scattering in optical Fibers: Maxwell’s and the wave equation; Fiber Modes; Nonlinear Schrödinger Equation; Raman gain process; Coupled Amplitude Equations; CW coupled equations. Raman Pumping in Optical Fiber Communications: Semiconductor Lasers; Laser structure; Materials used; Current capabilities e.g. power range, wavelength range; Future trends; Raman fiber lasers; Description of the cascaded Raman fiber laser process; Description of pump sources; 9xx multimode diodes; Yb-doped cladding pumped fiber laser; Rate Equations describing the process; Performance optimization e.g. choosing fiber length, output coupler reflectivity; Multiple wavelength pumps; Higher order pump sources; Current capabilities e.g. power range, wavelength range; Comparison between the two sources. Distributed Raman amplification along the Transmission span: Optical signal-to-noise ratio; Increasing the optical signal-to-noise ratio; Increasing span reach or capacity; Equivalent noise and how to measure it; Multiple wavelength Raman pumps for gain flatness; Selecting the correct wavelength and power distribution; Co and counter pumping; Advantages of counter pumping; Reasons for co-pumping; Higher-order pumping; Why use higher order pumping? The tradeoff between going to different orders; Time division multiplexing of pumps; Tradeoff between OSNR and nonlinear penalties. Discrete Raman amplifiers: Contrast with distributed amplifiers; Rayleigh backscattered light; Noise figure now dominated by amplified spontaneous emission; Comparison of discrete Raman amplifiers with other approaches, e.g. erbium, thulium etc.; Dispersion compensating fiber (DCF); What is DCF and why is it used; Raman properties of DCF fiber which makes it attractive; Amplifier design issues; Fiber lengths; Number of stages; Optimization of fibers for dispersion compensating Raman amplifiers. Impairments and Limitations to Raman Amplification: MPI penalties; Rayleigh backscattered light; Effect on system performance; Measurement techniques; Time Domain extinction method; Electrical spectrum analyzer method; Pump signal transfer; Transient effects such as adding or dropping channels in single spans and multiple spans; FWM impairments; Pump-pump interaction; Pump-signal interaction.
- No. of pages: 392
- Language: English
- Edition: 1
- Published: December 16, 2004
- Imprint: Academic Press
- Hardback ISBN: 9780120445066
- eBook ISBN: 9780080480541
CH
Clifford Headley
Affiliations and expertise
OFS Laboratories, Somerset, NJ, U.S.A.GA
Govind P. Agrawal
Govind P. Agrawal received his B.Sc. degree from the University of Lucknow in 1969 with honours. He was awarded a gold medal for achieving the top position in the university. Govind joined the Indian Institute of Technology at New Delhi in 1969 and received the M.Sc. and Ph.D. degrees in 1971 and 1974, respectively. After holding positions at the Ecole Polytechnique (France), the City University of New York, and the Laser company, Quantel, Orsay, France, Dr. Agrawal joined in 1981 the technical staff of the world-famous AT&T Bell Laboratories, Murray Hill, N.J., USA, where he worked on problems related to the development of semiconductor lasers and fiber-optic communication systems. He joined in 1989 the faculty of the Institute of Optics at the University of Rochester where he is a Professor of Optics. His research interests focus on quantum electronics, nonlinear optics, and optical communications. In particular, he has contributed significantly to the fields of semiconductor lasers, nonlinear fiber optics, and optical communications. He is an author or co-author of more than 250 research papers, several book chapters and review articles, and four books. He has also edited the books "Contemporary Nonlinear Optics" (Academic Press, 1992) and "Semiconductor Lasers: Past, Present and Future" (AIP Press, 1995). The books authored by Dr. Agrawal have influenced an entire generation of scientists. Several of them have been translated into Chinese, Japanese, Greek, and Russian.
Affiliations and expertise
Institute of Optics, University of Rochester, NY, USA