
Quantum Communication, Quantum Networks, and Quantum Sensing
- 1st Edition - July 14, 2022
- Imprint: Academic Press
- Author: Ivan B. Djordjevic
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 2 2 9 4 2 - 2
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 2 3 1 0 0 - 5
Quantum Communication, Quantum Networks, and Quantum Sensing represents a self-contained introduction to quantum communication, quantum error-correction, quantum networks,… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteQuantum Communication, Quantum Networks, and Quantum Sensing represents a self-contained introduction to quantum communication, quantum error-correction, quantum networks, and quantum sensing. It starts with basic concepts from classical detection theory, information theory, and channel coding fundamentals before continuing with basic principles of quantum mechanics including state vectors, operators, density operators, measurements, and dynamics of a quantum system. It continues with fundamental principles of quantum information processing, basic quantum gates, no-cloning and theorem on indistinguishability of arbitrary quantum states. The book then focuses on quantum information theory, quantum detection and Gaussian quantum information theories, and quantum key distribution (QKD). The book then covers quantum error correction codes (QECCs) before introducing quantum networks. The book concludes with quantum sensing and quantum radars, quantum machine learning and fault-tolerant quantum error correction concepts.
- Integrates quantum information processing fundamentals, quantum communication, quantum error correction, quantum networks, QKD, quantum sensing, and quantum machine learning
- Provides in-depth exposition on the design of quantum error correction circuits, quantum communications systems, quantum networks, and quantum sensing systems
- Shows how to design the information processing circuits, stabilizer codes, CSS codes, entanglement-assisted quantum error correction codes
- Describes quantum machine learning
Engineers, computer scientists, optical engineers, physicists and mathematicians wanting to understand the principles of quantum communications, quantum networks and sensing
- Cover image
- Title page
- Table of Contents
- Copyright
- Preface
- Chapter 1. Basics of quantum information, quantum communication, quantum sensing, and quantum networking
- 1.0. Overview
- 1.1. Photon polarization
- 1.2. The concept of qubit
- 1.3. Quantum gates and quantum information processing
- 1.4. Quantum teleportation
- 1.5. Quantum error correction concepts
- 1.6. Quantum sensing
- 1.7. Quantum key distribution
- 1.8. Quantum networking
- 1.9. Organization of the book
- Chapter 2. Information theory, error correction, and detection theory
- 2.1. Classical information theory fundamentals
- 2.2. Channel coding preliminaries
- 2.3. Linear block codes
- 2.4. Cyclic codes
- 2.5. Bose–Chaudhuri–Hocquenghem codes
- 2.6. Reed–Solomon, concatenated, and product codes
- 2.7. Detection and estimation theory fundamentals
- 2.8. Concluding remarks
- Chapter 3. Quantum information processing fundamentals
- 3.1. Quantum information processing features
- 3.2. State vectors, operators, projection operators, and density operators
- 3.3. Measurements, uncertainty relations, and dynamics of quantum systems
- 3.4. Superposition principle, quantum parallelism, and quantum information processing basics
- 3.5. No-cloning theorem
- 3.6. Distinguishing quantum states
- 3.7. Quantum entanglement
- 3.8. Operator-sum representation
- 3.9. Decoherence effects, depolarization, and amplitude damping channel models
- 3.10. Summary
- Chapter 4. Quantum information theory fundamentals
- 4.1. Introductory remarks
- 4.2. Von Neumann entropy
- 4.3. Holevo information, accessible information, and Holevo bound
- 4.4. Data compression and Schumacher's noiseless quantum coding theorem
- 4.5. Quantum channels
- 4.6. Quantum channel coding and Holevo–Schumacher–Westmoreland theorem
- 4.7. Summary
- Chapter 5. Quantum detection and quantum communication
- 5.1. Density operators (revisited)
- 5.2. Quantum detection theory fundamentals
- 5.3. Binary quantum detection
- 5.4. Coherent states, quadrature operators, and uncertainty relations
- 5.5. Binary quantum optical communication in the absence of background radiation
- 5.6. Field coherent states, P-representation, and noise representation
- 5.7. Binary quantum detection in the presence of noise
- 5.8. Gaussian states, transformation, and channels, squeezed states, and Gaussian state detection
- 5.9. Generation of quantum states
- 5.10. Multilevel quantum optical communication
- 5.11. Summary
- Chapter 6. Quantum key distribution
- 6.1. Cryptography basics
- 6.2. Quantum key distribution basics
- 6.3. No-cloning theorem and distinguishing quantum states
- 6.4. Discrete variable quantum key distribution protocols
- 6.5. Quantum key distribution security
- 6.6. Decoy-state protocols
- 6.7. Measurement-device-independent quantum key distribution protocols
- 6.8. Twin-field quantum key distribution protocols
- 6.9. Information reconciliation and privacy amplification
- 6.10. Continuous variable quantum key distribution
- 6.11. Summary
- Chapter 7. Quantum error correction fundamentals
- 7.1. Pauli operators (revisited)
- 7.2. Quantum error correction concepts
- 7.3. Quantum error correction
- 7.4. Important quantum coding bounds
- 7.5. Quantum operations (superoperators) and quantum channel models
- 7.6. Summary
- Chapter 8. Quantum stabilizer codes and beyond
- 8.1. Stabilizer codes
- 8.2. Encoded operators
- 8.3. Finite geometry representation
- 8.4. Standard form of stabilizer codes
- 8.5. Efficient encoding and decoding
- 8.6. Nonbinary stabilizer codes
- 8.7. Subsystem codes
- 8.8. Topological codes
- 8.9. Surface codes
- 8.10. Entanglement-assisted quantum codes
- 8.11. Summary
- Chapter 9. Quantum low-density parity-check codes
- 9.1. Classical low-density parity-check codes
- 9.2. Dual-containing quantum low-density parity-check codes
- 9.3. Entanglement-assisted quantum low-density parity-check codes
- 9.4. Iterative decoding of quantum low-density parity-check codes
- 9.5. Spatially coupled quantum low-density parity-check codes
- 9.6. Summary
- Chapter 10. Quantum networking
- 10.1. Quantum communications networks and the quantum Internet
- 10.2. Quantum teleportation and quantum relay
- 10.3. Entanglement distribution
- 10.4. Engineering entangled states and hybrid continuous-variable–discrete-variable quantum networks
- 10.5. Cluster state-based quantum networking
- 10.6. Surface code-based and quantum low-density parity-check code-based quantum networking
- 10.7. Entanglement-assisted communication and networking
- 10.8. Summary
- Chapter 11. Quantum sensing and quantum radars
- 11.1. Quantum phase estimation
- 11.2. Quantum Fisher information and quantum Cramér–Rao bound
- 11.3. Distributed quantum sensing
- 11.4. Quantum radars
- 11.5. Summary
- Chapter 12. Quantum machine learning
- 12.1. Machine learning fundamentals
- 12.2. The Ising model, adiabatic quantum computing, and quantum annealing
- 12.3. Quantum approximate optimization algorithm and variational quantum eigensolver
- 12.4. Quantum boosting
- 12.5. Quantum random access memory
- 12.6. Quantum matrix inversion
- 12.7. Quantum principal component analysis
- 12.8. Quantum optimization-based clustering
- 12.9. Grover algorithm-based global quantum optimization
- 12.10. Quantum K-means
- 12.11. Quantum support vector machines
- 12.12. Quantum neural networks
- 12.13. Summary
- Chapter 13. Fault-tolerant quantum error correction
- 13.1. Fault-tolerance basics
- 13.2. Fault-tolerant quantum information processing concepts
- 13.3. Fault-tolerant quantum error correction
- 13.4. Summary
- Index
- Edition: 1
- Published: July 14, 2022
- No. of pages (Paperback): 622
- No. of pages (eBook): 622
- Imprint: Academic Press
- Language: English
- Paperback ISBN: 9780128229422
- eBook ISBN: 9780128231005
ID