LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Polymeric Materials for Biomedical Implants: Characterization, Properties, and Applications offers a comprehensive guide to the various polymers utilized in the developme… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Polymeric Materials for Biomedical Implants: Characterization, Properties, and Applications offers a comprehensive guide to the various polymers utilized in the development and application of biomedical implants. These materials possess unique properties which make them ideal for use in biomedical implants, including their high degree of flexibility, ease of fabrication, non-magnetic and radio transparent properties for medical imaging, and ease of engineering for biocompatibility. The book thoroughly reviews the properties, characterization and a broad range of applications of polymeric materials in biomedical implants, bringing all key information on this important topic together under a single reference.
The book's chapters cover vital topics for the development of polymeric biomedical implants, including biomaterial-tissue interactions, mechanical and surface property requirements for different implants, as well as market and ethical issues. This will be a useful reference for academics and researchers working in materials science, biomedical engineering, regenerative medicine and pharmacology, as well as R&D groups developing biomedical implants.
ST
Sabu Thomas is a Professor and Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, India. He is internationally recognized for his contributions to polymer science and engineering, with his research interests encompassing polymer nanocomposites, elastomers, polymer blends, interpenetrating polymer networks, polymer membranes, green composites, nanocomposites, nanomedicine, and green nanotechnology. His groundbreaking inventions in polymer nanocomposites, polymer blends, green bionanotechnology, and nano-biomedical sciences have significantly advanced the development of new materials for the automotive, space, housing, and biomedical fields.
AT