SUSTAINABLE DEVELOPMENT
Innovate. Sustain. Transform.
Save up to 30% on top Physical Sciences & Engineering titles!

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved unders… Read more
SUSTAINABLE DEVELOPMENT
Save up to 30% on top Physical Sciences & Engineering titles!
The work will be suitable for graduate students and above studying the subfield of materials science concerned with polymers. It may also be applicable to chemists, chemical engineers, material scientists, polymer scientists, environmental scientists and biologists in academia and government or corporate research labs
Editors-in-Chief
Volume Editors
Editors-in-Chief: Biographies
Editors: Biographies
Preface
Foreword
Permission Acknowledgments
VOLUME 1. Basic Concepts and Polymer Properties
1.01. Basic Concepts and Polymer Properties
1.02. Statistical Description of Chain Molecules
1.02.1 The Main Characteristics of Polymer Chain Structures
1.02.2 Linear Homopolymers: Ideal Chain Models
1.02.3 Living Polymers
1.02.4 Systems of Ideal Polymer Chains in Confined Conditions
1.02.5 Real Polymer Chains with Excluded-Volume Interactions
1.02.6 Long-Range Correlation Effects in Polymer Melts
1.02.7 Concluding Remark
REFERENCES
1.03. Polymer Synthesis
1.03.1 Introduction
1.03.2 Anionic Chain Polymerization of Styrene
1.03.3 Radical Chain Polymerization
1.03.4 Cationic and Metal-Catalyzed Chain Polymerizations
1.03.5 Polymerization Thermodynamics
1.03.6 Chain Copolymerizations
1.03.7 Polymer Stereochemistry
1.03.8 Ring-Opening Polymerization
1.03.9 Step Polymerizations
1.03.10 Nonlinear Polymers
1.03.11 Postpolymerization Functionalization
1.03.12 Summary
REFERENCES
1.04. Static and Dynamic Properties
1.04.1 Introduction
1.04.2 Diversity of Macromolecular Architectures
1.04.3 Dilute Solutions of Linear-Chain Macromolecules
1.04.4 Semidilute Solutions of Chain Macromolecules
1.04.5 Polymer Globules and Phase Separation
1.04.6 Solutions of Star-Branched Macromolecules
1.04.7 Solutions of Comblike Polymers
1.04.8 Dendritic Polymers in Solutions
1.04.9 Randomly Branched Polymers in Solutions
1.04.10 Solutions of Block Copolymers
1.04.11 Concluding Remarks
REFERENCES
1.05. Solutions of Charged Polymers
1.05.1 What Are Charged Polymers and Why Are They Important?
1.05.2 A Model of Charged Chains
1.05.3 Dilute Salt-Free Polyelectrolyte Solutions
1.05.4 Effect of Added Salt on Chain Conformations in Dilute Solutions
1.05.5 Semidilute Polyelectrolyte Solutions
1.05.6 Phase Separation in Polyelectrolyte Solutions
1.05.7 Polyampholyte Solutions
1.05.8 Conclusions and Outlook
REFERENCES
1.06. Viscoelasticity and Molecular Rheology
1.06.1 Introduction
1.06.2 Experimental Techniques and Physical Observables
1.06.3 Unentangled Polymer Models
1.06.4 Entangled Polymer Models
1.06.5 Summary and Outlook
Appendix: Continuous Rouse Model
REFERENCES
1.07. Rubberlike Elasticity
1.07.1 Introduction
1.07.2 Structure of Networks
1.07.3 Molecular Theories of Rubber Elasticity
1.07.4 Phenomenological Theories
1.07.5 Computer Simulations
1.07.6 Swelling of Networks and Responsive Gels
1.07.7 The Enthalpic Component of Rubber Elasticity
1.07.8 Multimodal Elastomers
1.07.9 Liquid-Crystalline Elastomers
1.07.10 Reinforced Elastomers
1.07.11 Characterization Techniques
REFERENCES
1.08. Amorphous Polymers
1.08.1 Introduction
1.08.2 Structure of Amorphous Polymers
1.08.3 Dynamics of Amorphous Polymers
1.08.4 Amorphous Polymers in Nanometer Thin Layers
1.08.5 Conclusions
REFERENCES
1.09. Semicrystalline Polymers
1.09.1 Introduction
1.09.2 Flexible-Chain Polymers
1.09.3 Semirigid Chain Polymers
1.09.4 Large-Scale Supramolecular Structure of Semicrystalline Polymers
REFERENCES
1.10. Liquid Crystalline Polymers
1.10.1 Introduction
1.10.2 Constitution and Structure of Low-Molecular-Mass Liquid Crystals
1.10.3 LC Polymers: General Consideration
1.10.4 Main-Chain LC Polymers
1.10.5 Side-Chain LC Polymers
1.10.6 Properties and Application of Side-Chain LC Polymers
1.10.7 LC Dendrimers with Mesogenic Groups
1.10.8 Liquid Crystals Dispersed in Polymers and LC Composites
1.10.9 Miscellaneous LC Polymers
1.10.10 Conclusion
REFERENCES
1.11. Phase Segregation/Polymer Blends/Microphase Separation
1.11.1 Phase Segregation
1.11.2 Polymer Blends
1.11.3 Block Copolymers
1.11.4 Conclusion
REFERENCES
1.12. Polymer/Colloid Interactions and Soft Polymer Colloids
1.12.1 General Introduction
1.12.2 Depletion Interaction
1.12.3 Star Polymers as Model Soft Sphere Colloids
1.12.4 Responsive Microgels as Model Colloids
REFERENCES
1.13. Polymer Gels
1.13.1 Introduction
1.13.2 Synthesis of Polymer Gels
1.13.3 Subchains and Their Conformations
1.13.4 Elasticity of Polymer Gels
1.13.5 Peculiarities of Ion-Containing Gels
1.13.6 Polyelectrolyte Gels
1.13.7 Manifestation of Ionomer Behavior
1.13.8 Responsive Gels
1.13.9 Some Applications of Superabsorbent Gels
1.13.10 Some Applications of Responsive Gels
REFERENCES
1.14. Chain Conformation and Manipulation
1.14.1 Introduction
1.14.2 Chain Conformation
1.14.3 PEs at Surfaces
1.14.4 Study of Helical Conformations by AFM
1.14.5 Conformation of Polymer Stars
1.14.6 Motion of Single Molecules
1.14.7 Manipulation of Polymer Conformation in Shear Flow
1.14.8 Nanomanipulations with AFM Tip
1.14.9 Chemical Modification of Single Polymer Molecules
1.14.10 Nanodevices from Single Polymer Molecules
1.14.11 Conclusions and Outlook
REFERENCES
1.15. Polymers at Interfaces and Surfaces and in Confined Geometries
1.15.1 Introduction
1.15.2 Polymers at Solid Substrates
1.15.3 Surfaces of One-Component Polymer Liquids and Wetting
1.15.4 Inhomogeneous Polymer Blends
1.15.5 Summary and Outlook
REFERENCES
1.16. Molecular Dynamics Simulations in Polymer Science
1.16.1 Introduction
1.16.2 What Can Molecular Dynamics Do?
1.16.3 Philosophy of Molecular Dynamics
1.16.4 Concepts and Methodologies
1.16.5 Multiscale Simulations: Bridging Different Time and Length Scales
1.16.6 Advanced Simulation Techniques
1.16.7 Concluding Remarks
REFERENCES
1.17. Monte Carlo Simulations in Polymer Science
1.17.1 Introduction: What Monte Carlo Simulations Want to Achieve
1.17.2 Models Used in MC Simulations of Polymers
1.17.3 General Aspects of Dynamic MC Methods
1.17.4 Exploiting the Freedom to Choose Suitable MC Moves
1.17.5 Other MC Methods to Simulate Models for Polymers
1.17.6 Concluding Remarks
REFERENCES
1.18. General Polymer Nomenclature and Terminology
1.18.1 Introduction
1.18.2 A Short History
1.18.3 Projects
1.18.4 Examples of Most Successful Projects
1.18.5 Final Remarks
REFERENCES
VOLUME 2. Polymer Characterization
2.01. Introduction and Perspectives
2.01.1 Introduction
2.01.2 Perspectives
REFERENCES
Characterization of Solutions
2.02. Polymer Properties in Solutions
2.02.1 Introduction
2.02.2 Global Conformations and Statistical Properties
2.02.3 Thermodynamic Properties
2.02.4 Viscosity
2.02.5 Sedimentation and Diffusion
2.02.6 Some Topics
REFERENCES
Characterization by Separation Methods
2.03. Chromatography
2.03.1 Introduction
2.03.2 Principles of Liquid Chromatography of Polymers
2.03.3 Interactive Modes of Polymer Liquid Chromatography
2.03.4 Multidetector Size-Exclusion Chromatography
2.03.5 Coupling of Liquid Chromatography and Spectroscopic Detectors
2.03.6 Two-Dimensional Liquid Chromatography
2.03.7 High-Temperature Interaction Liquid Chromatography
REFERENCES
2.04. Fractionation
2.04.1 Introduction
2.04.2 Fractionation by Liquid–Liquid Phase Separation
2.04.3 Crystallization–Dissolution Fractionation
2.04.4 Field-Flow Fractionation
REFERENCES
Characterization by Spectroscopy
2.05. Mass Spectrometry
2.05.1 History
2.05.2 Principles
2.05.3 Polymer Analysis by MALDI and ESI-TOF MS
2.05.4 Outlook
REFERENCES
2.06. Solution NMR
2.06.1 Introduction
2.06.2 Principles of NMR
2.06.3 Multipulse NMR Experimental Methods
2.06.4 Applications of NMR to Polymer Structure Problems
2.06.5 Conclusions
REFERENCES
2.07. Solid-State NMR of Polymers
2.07.1 Introduction
2.07.2 Fundamentals of Solid-State NMR
2.07.3 Polymer Applications of Solid-State NMR
2.07.4 Conclusions
REFERENCES
2.08. Electron Spin Resonance Spectroscopy
2.08.1 Introduction
2.08.2 Electron Spin Resonance Methods
2.08.3 ESR Imaging
2.08.4 Application of ESR Methods to Polymeric Systems
2.08.5 Conclusions
REFERENCES
2.09. Vibrational Spectroscopy
2.09.1 Introduction
2.09.2 Basic Principles of Vibrational Spectroscopy
2.09.3 Vibrational Spectroscopic Interpretation of the Structure of Polymers
2.09.4 FIR Spectroscopy and Low-Frequency Vibrations
2.09.5 Vibrational Spectroscopy of Polymers Under External Perturbations and in Combination with Other Measurement Techniques
2.09.6 Reaction Monitoring and Process Control by Vibrational Spectroscopy
2.09.7 IR and Raman Spectroscopic Imaging
2.09.8 Calculation of Vibrational Spectra of Polymers*
REFERENCES
Structure Characterization in Fourier Space
2.10. Light Scattering
2.10.1 Introduction
2.10.2 Theoretical Background
2.10.3 Instrumentation and Experimental Practice
2.10.4 Application to the Characterization of Macromolecular Systems
REFERENCES
2.11. Neutron Scattering
2.11.1 Introduction
2.11.2 Methods
2.11.3 Representative SANS Results
2.11.4 Polymer Dynamics
2.11.5 Conclusions
Appendix
REFERENCES
2.12. X-ray Scattering
2.12.1 Introduction
2.12.2 Reciprocal Space and Fourier Transformation
2.12.3 Intensity Distribution and Autocorrelation Function
2.12.4 Scattering from Crystals
2.12.5 Dilute Systems
2.12.6 Ordered Nanostructures: Macrolattices
2.12.7 Layered Structures
2.12.8 SAXS from Two-Phase Systems
2.12.9 Fiber Scattering: Preferred Orientation
2.12.10 Conclusion
REFERENCES
2.13. Combined Small-Angle Scattering for Characterization of Hierarchically Structured Polymer Systems over Nano-to-Micron Meter
2.13.1 Introduction
2.13.2 Artificially Synthesized Cellulose versus Biosynthesized Cellulose
2.13.3 Artificially Synthesized Cellulose Systems
2.13.4 Biosynthesized Cellulose
2.13.5 Perspectives
REFERENCES
2.14. Combined Small-Angle Scattering for Characterization of Hierarchically Structured Polymer Systems over Nano-to-Micron Meter
2.14.1 Introduction
2.14.2 Structural Levels
2.14.3 Unified Function
2.14.4 Hierarchy of Structural Levels
2.14.5 Structural Models and the Unified Function
2.14.6 Examples of Structural Models and the Unified Function
2.14.7 Polydispersity and Asymmetry for Porod Scattering
2.14.8 Restrictions for the Unified Function Parameters
2.14.9 Software for Unified Fits
2.14.10 Conclusion
REFERENCES
2.15. Reflectivity, Off-Specular Scattering, and GI-SAS
2.15.1 Introduction
2.15.2 Grazing-Incidence Kinematics and Coherence
2.15.3 Specular Reflection
2.15.4 Off-Specular Scattering
2.15.5 GI-SAS and Complete Reflectometry
2.15.6 Conclusion
REFERENCES
2.16. Reflectivity, GI-SAS and GI-Diffraction
2.16.1 Introduction
2.16.2 Theories
2.16.3 XR and GIXS Applications in Nanostructured Polymers
2.16.4 Conclusions
REFERENCES
Structure Characterization in Real Space
2.17. Optical Microscopy
2.17.1 Introduction
2.17.2 Conventional Imaging Modes
2.17.3 Polarized Light Microscopy
2.17.4 Digital Microscopy
REFERENCES
2.18. Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field Microscopy
2.18.1 Introduction
2.18.2 A Confocal Single-Molecule Setup
2.18.3 Wide-Field Single-Molecule Microscopy
2.18.4 Single Molecules?
2.18.5 Sample Preparation
2.18.6 Examples of Polymer Studies by Single-Molecule Measurements
2.18.7 Super-Resolution Optical Far-Field Microscopy, Theory, and Applications in Polymer Studies
REFERENCES
2.19. Electron Microscopy of Organic Materials
2.19.1 Introduction
2.19.2 Sample Preparation
2.19.3 Beam Sensitivity of Polymer and Organic Samples
2.19.4 Electron Beam-Induced Structural Transitions in Organic Molecular Crystals
2.19.5 Low-Dose HREM
2.19.6 Molecular Simulations
2.19.7 Low-Voltage Electron Microscope
2.19.8 Dispersed Carbon Nanotubes
2.19.9 Low-Voltage Scanning Electron Microscopy
2.19.10 FIB Imaging of Polymers on Inorganic Substrates
2.19.11 Cryo-TEM Techniques
2.19.12 Aberration-Corrected Microscopy
2.19.13 Dynamic TEM
2.19.14 Conclusions
REFERENCES
2.20. Transmission Electron Microtomography
2.20.1 Introduction
2.20.2 3D Microscopy
2.20.3 Some Basics of Electron Tomography
2.20.4 Recent Developments in TEMT
REFERENCES
2.21. Environmental Scanning Electron Microscopy
2.21.1 Introduction
2.21.2 The Instrument: A Comparison with Conventional SEM
2.21.3 Static Experiments
2.21.4 Dynamic Experiments
2.21.5 Biopolymers and Biofilms
2.21.6 Conclusions
REFERENCES
2.22. Micro X-Ray CT
2.22.1 Introduction
2.22.2 Principle of the X-Ray CT
2.22.3 Micro X-Ray CT with Microfocus X-Ray Generator
2.22.4 Micro X-Ray CT with SR
2.22.5 Use of X-Ray Phase Information
2.22.6 Summary and Outlook
REFERENCES
Surface and Interface Characterization
2.23. Scanning Probe Microscopy of Polymers
2.23.1 Introduction
2.23.2 Experiment in AFM
2.23.3 Imaging of Molecules, Molecular Assemblies, and Processes
2.23.4 Compositional Mapping of Multicomponent Polymer Systems
2.23.5 Toward Quantitative Measurements of Local Properties
REFERENCES
2.24. Adhesion, Friction, and Lubrication between Polymer-Bearing Surfaces
2.24.1 Introduction
2.24.2 Monomeric Fluids Under Confinement
2.24.3 Polymer-Modified Surfaces
2.24.4 Summary and Future Perspective
REFERENCES
2.25. Single-Molecule Detection and Manipulation
2.25.1 Introduction
2.25.2 Instrumentation
2.25.3 Calibration
2.25.4 Data Fitting and Selection
2.25.5 Examples
2.25.6 Outlook
REFERENCES
2.26. Plasmonics
2.26.1 Introduction
2.26.2 Fundamentals of Guided Wave Optics
2.26.3 Observation of Thin Polymer Films
2.26.4 Applications
2.26.5 Conclusion
REFERENCES
2.27. Ion Beam Analysis
2.27.1 Introduction
2.27.2 Applications of IBA in Polymer Science
2.27.3 Technique Development
2.27.4 Outlook for IBA in Polymer Science
REFERENCES
Thermal, Mechanical, Dielectric & Electrical Characterization
2.28. Rheological Characterization of Polymeric Liquids
2.28.1 Basics
2.28.2 Characterization of Homopolymers
2.28.3 Characterization of Multiphase Polymeric Materials
2.28.4 Concluding Remarks
Appendix A General Microscopic Expression of Stress Tensor
REFERENCES
2.29. Mechanical Characterization of Glassy Polymers
2.29.1 Introduction
2.29.2 Phenomenology
2.29.3 Origin of Mobility
2.29.4 Factors Influencing Mobility
2.29.5 Avoiding Localization: The Intrinsic Deformation of Polymers
2.29.6 Competition between Lifetime and Embrittlement
2.29.7 Modeling
2.29.8 Characterization
2.29.9 Multimode Model
2.29.10 Multiprocess Model
2.29.11 Epilogue
Appendix: Simplification to 1D
REFERENCES
2.30. Rheo-Optics
2.30.1 General Outline
2.30.2 Rheo-optics at Mesoscopic Scale
2.30.3 Rheo-optics at the Submolecular Level
2.30.4 General Conclusions and Perspectives
REFERENCES
2.31. Calorimetry
2.31.1 Introduction
2.31.2 Fundamentals and Modes of Operation
2.31.3 Fast Scanning Calorimetry
2.31.4 Selected Applications of Advanced Calorimetry
2.31.5 Summary
REFERENCES
2.32. Dielectric Spectroscopy
2.32.1 Introduction
2.32.2 Theoretical Background
2.32.3 Analysis of Dielectric Spectra
2.32.4 Recent Advances in Dielectrics
2.32.5 Concluding Remarks
REFERENCES
2.33. Conductivity Measurements
2.33.1 Introduction
2.33.2 Electrical Properties of Polymer Materials
2.33.3 Experimental Techniques
REFERENCES
VOLUME 3. Chain Polymerization of Vinyl Monomers
3.01. Introduction and Overview
3.01.1 Introduction
3.01.2 Overview
3.02. Fundamental Aspects of Chain Polymerization
3.02.1 Introduction
3.02.2 The Nobel Prize Award Ceremony Speech of A. Ölander on Behalf of the Nobel Committee
3.02.3 Bodenstein Observation of the First Chain Reactions
3.02.4 Nernst’s Mechanism of the Cl2 + H2 Reaction (Finally Accepted as the Correct One)
3.02.5 Kinetic Scheme of the Fundamental Chain Reaction: Cl2Â +Â H2
3.02.6 Stationary State, Bodenstein Approximation, and Final Solution
3.02.7 Definitions Pertinent to Chain Reactions
3.02.8 Definitions Pertinent to Chain Polymerizations
3.02.9 Two Kinds of Steady States in Chain Polymerizations
3.02.10 Discovery of Living Polymerization by Michael Szwarc
3.02.11 Living Polymerization
3.02.12 Nearly Steady-State Polymerizations: Controlled Polymerizations Involving Quasi-Equilibria between Active and Dormant Species
3.02.13 Second Kind of the Steady State: The Rate of Formation of Active Centers Balanced by the Rate of Their Disappearance. Classical Radical Polymerization
3.02.14 Non-Steady-State Polymerizations
3.02.15 Chain Polymerizations and Structure of Macromolecules
3.02.16 Condensative Chain Polymerizations: Biopolymers
3.02.17 Polymerize Chain Reaction. DNA Syntheses
3.02.18 Conclusions
Appendix: Lifetime and Half-Life: Definitions and Their Relationship
REFERENCES
3.03. Radical Reactivity by Computation and Experiment
3.03.1 Introduction
3.03.2 Radical Stability
3.03.3 Other Important Properties
3.03.4 Tools for Linking Structure to Reactivity
REFERENCES
3.04. Radical Polymerization
3.04.1 Introduction
3.04.2 Initiation
3.04.3 Propagation
3.04.4 Termination
3.04.5 Chain Transfer
3.04.6 Reversible Deactivation Radical Polymerization
REFERENCES
3.05. Controlled and Living Radical Polymerization – Principles and Fundamentals
3.05.1 Introduction
3.05.2 Principles and Classification of LRP Techniques
3.05.3 Kinetic Theory of LRP: Polymerization Rates
3.05.4 Kinetic Theory of LRP: Polydispersities
3.05.5 Nitroxide-Mediated Polymerization
3.05.6 Atom Transfer Radical Polymerization
3.05.7 Degenerative Chain Transfer-Mediated Polymerization
3.05.8 Experiments on Some Newer Systems
3.05.9 Summary on Activation and Deactivation Rate Constants
3.05.10 Conclusions
REFERENCES
3.06. Degenerative Transfer with Alkyl Iodide
3.06.1 Introduction
3.06.2 Alkyl Iodide Transfer Agents Used in Degenerative Transfer Polymerization with Alkyl Iodides
3.06.3 Mechanism and Kinetics of Degenerative Transfer Polymerization with Alkyl Iodide
3.06.4 Other Related Methods
3.06.5 Monomers Used in Degenerative Transfer Polymerization with Iodo-Compounds
3.06.6 Processes
3.06.7 Macromolecular Architectures Prepared by Degenerative Transfer with Iodo-Compounds
3.06.8 Applications of Polymers Prepared by Degenerative Transfer with Iodo-Compounds
3.06.9 Prospects
3.06.10 Conclusions
REFERENCES
3.07. Radical Addition–Fragmentation Chemistry and RAFT Polymerization
3.07.1 Introduction
3.07.2 Compounds Providing Irreversible Addition–Fragmentation Chain Transfer
3.07.3 Compounds Providing Reversible Addition–Fragmentation Chain Transfer
REFERENCES
3.08. Other Degenerative Transfer Systems
3.08.1 Introduction
3.08.2 Background
3.08.3 Organoheteroatom-Mediated LRP
3.08.4 Mechanism
3.08.5 Macromolecular Engineering
3.08.6 Conclusions
REFERENCES
3.09. Cobalt-Catalyzed Chain Transfer Polymerization
3.09.1 Introduction and Overview
3.09.2 Polymerization Mechanism
3.09.3 Catalysts
3.09.4 Monomers for CCT
3.09.5 Applications
3.09.6 Summary
REFERENCES
3.10. Nitroxide-Mediated Polymerization
3.10.1 Introduction
3.10.2 Synthesis of Nitroxides and Alkoxyamines
3.10.3 Features of Nitroxide-Mediated Polymerization
3.10.4 Advanced Architectures and Materials by NMP
3.10.5 Conclusions and Perspectives
REFERENCES
3.11. Organometallic-Mediated Radical Polymerization
3.11.1 Introduction: Discovery of OMRP
3.11.2 Mechanistic Interplays
3.11.3 Tuning the Metal–Carbon Bond Strength
3.11.4 Interplay of Dissociative and Associative Processes
3.11.5 ‘Clean’ OMRP-RT Processes
3.11.6 OMRP-RT versus CCT
3.11.7 Interplay of OMRP-RT and ATRP
3.11.8 Metal Elimination and Recycling
3.11.9 Conclusions and Perspectives
REFERENCES
3.12. Copper-Mediated Atom Transfer Radical Polymerization
3.12.1 Introduction
3.12.2 ATRP Equilibrium
3.12.3 Initiating an ATRP
3.12.4 Removal of Copper
3.12.5 ATRP Thermodynamics and Kinetics
3.12.6 Components/Phenomenology/Process
3.12.7 Control over Polymer Composition
3.12.8 Polymer Topology
3.12.9 Site-Specific Functionality
3.12.10 Hybrid Materials
3.12.11 Applications
3.12.12 Conclusions
REFERENCES
3.13. Transition Metal Complexes for Metal-Catalyzed Atom Transfer Controlled/Living Radical Polymerization
3.13.1 Introduction
3.13.2 Scope of Transition Metal-Catalyzed Living Radical Polymerization
3.13.3 Late Transition Metal Complexes for Living Radical Polymerization
3.13.4 Early Transition Metal Complexes for Living Radical Polymerization
3.13.5 Prospective View of Catalysts for Living Radical Polymerization
REFERENCES
3.14. Vinyl Polymerization in Heterogeneous Systems
3.14.1 Introduction
3.14.2 Vinyl Polymerization in Aqueous Dispersed Systems
3.14.3 Vinyl Polymerization in Nonaqueous Dispersed Systems
3.14.4 Conclusion
REFERENCES
3.15. Cationic Polymerization of Nonpolar Vinyl Monomers
3.15.1 Introduction
3.15.2 Fundamentals of Cationic Polymerization
3.15.3 Monomers
3.15.4 Initiating Systems
3.15.5 Solvent Polarity and Temperature
3.15.6 Controlled Initiation
3.15.7 Living Cationic Polymerization
3.15.8 Functional Polymers by Living Cationic Polymerization
3.15.9 Block Copolymers
3.15.10 Branched and Hyperbranched Polymers
3.15.11 Conclusions
REFERENCES
3.16. Cationic Polymerization of Polar Monomers
3.16.1 Introduction
3.16.2 General Aspects
3.16.3 Living Cationic Polymerization
3.16.4 Design of Initiating Systems for Living Polymerization
3.16.5 Recent Developments in Living Polymerization
3.16.6 New Monomers
3.16.7 Sequence or Shape-Regulated Functional Polymers
3.16.8 Stimuli-Responsive Polymers
REFERENCES
3.17. Anionic Polymerization of Nonpolar Monomers
3.17.1 Introduction to Carbanions, Living Polymerization, and Anionic Polymerization
3.17.2 Initiators, Initiation Mechanisms, and Kinetics
3.17.3 Propagation Kinetics and Mechanisms
3.17.4 Chain Termination Reactions
3.17.5 Chain Transfer Reactions
3.17.6 Stereochemistry
3.17.7 Copolymerization
REFERENCES
3.18. Anionic Polymerization of Protected Functional Monomers
3.18.1 Introduction
3.18.2 Functional Styrene Derivatives
3.18.3 Functional 1,3-Butadiene Derivatives
3.18.4 Functional (Meth)acrylate Derivatives
3.18.5 N-Isopropylacrylamide
3.18.6 Concluding Remarks
REFERENCES
3.19. Anionic Polymerization of Polar Vinyl Monomers
3.19.1 Introduction
3.19.2 Mechanism of the Anionic Polymerization of Alkyl (Meth)acrylates
3.19.3 Anionic Polymerization of Other Acrylic Monomers
3.19.4 Anionic Polymerization of Other Polar Vinyl Monomers
3.19.5 Conclusions
REFERENCES
3.20. Industrial Catalysts for Alkene Polymerization
3.20.1 Catalysts for Polyolefin Production
3.20.2 Historical Development of Commercially Practiced Alkene Polymerization Catalysts
3.20.3 Global Polyolefin Catalyst and Product Markets
3.20.4 Conclusion
REFERENCES
3.21. Metallocene Alkene Polymerization Catalysts
3.21.1 Introduction
3.21.2 Definition of a Metallocene Polymerization Catalyst
3.21.3 General Mechanism
3.21.4 Ethylene Polymerization
3.21.5 1-Alkene Polymerization
3.21.6 Diene Polymerization
3.21.7 Copolymerization
3.21.8 Conclusions
3.21.9 Outlook
REFERENCES
3.22. Chain Shuttling Catalysis and Olefin Block Copolymers
3.22.1 Introduction
3.22.2 Block Copolymers from Living Polymerization
3.22.3 Olefin Block Copolymers from Reversible Chain Transfer
3.22.4 Identifying Reversibility in Chain Transfer
3.22.5 CCTP Characteristics in Single Catalyst Systems
3.22.6 Reactor Choice for OBC Synthesis
3.22.7 Diblock OBCs via Sequential Monomer Addition
3.22.8 Synthesis of OBCs with Dual-Catalyst Systems
3.22.9 Characterization of Olefin Block Copolymers
3.22.10 Olefin Block Copolymer Design and Applications
3.22.11 Functional Polyolefins from CCTP Systems
3.22.12 Conclusion and Outlook
REFERENCES
3.23. Living Transition Metal-Catalyzed Alkene Polymerization
3.23.1 Introduction
3.23.2 Living Olefin Polymerization
3.23.3 Early Metal Olefin Polymerization Catalysts
3.23.4 Non-group 4 Early Metal Polymerization Catalysts
3.23.5 Rare-Earth Metal Catalysts
3.23.6 Late Metal Olefin Polymerization Catalysts
3.23.7 Outlook and Summary
REFERENCES
3.24. Copolymerization of Alkenes and Polar Monomers by Early and Late Transition Metal Catalysts
3.24.1 Introduction
3.24.2 Coordination of Polar Groups to Transition Metals: Challenges for the Copolymerization of Olefins with Polar Comonomers
3.24.3 Methods for the Synthesis of Polar Copolymers with Early Transition Metals
3.24.4 Late Transition Metals in the Copolymerization of Functional and Nonpolar Olefins
3.24.5 Conclusion
REFERENCES
3.25. Alkene/CO Copolymerization
3.25.1 Introduction
3.25.2 Alternating Copolymer of Ethylene and CO
3.25.3 Nonalternating Copolymer of Ethylene and CO
3.25.4 Alternating Copolymerization of Mono-substituted Ethylene and CO
3.25.5 Copolymerization of Imines with Carbon Monoxide
3.25.6 Chemical Transformation of Polyketones
3.25.7 Physical Properties and Industrial Application of the Olefin/CO Copolymers
REFERENCES
3.26. Cycloolefin Polymerization
3.26.1 Introduction
3.26.2 Polycycloolefins: Homopolymerization
3.26.3 Cycloolefin Copolymers
3.26.4 Conclusions
REFERENCES
3.27. Alkyne Polymerization
3.27.1 Introduction
3.27.2 Polymerization Catalysts
3.27.3 Monosubstituted Acetylene Polymers
3.27.4 Disubstituted Acetylene Polymers
REFERENCES
VOLUME 4. Ring-Opening Polymerization and Special Polymerization Processes
4.01. Introduction
4.02. Thermodynamic and Kinetic Polymerizability
4.02.1 Introduction
4.02.2 Major Definitions
4.02.3 Equilibrium and Ceiling (Floor) Temperatures (Te and Tc/Tf)
4.02.4 Methods for Determination of Tc (or [M]e)
4.02.5 Factors Affecting Polymerizability: Enthalpy of Polymerization
4.02.6 Entropy-Driven Polymerization
4.02.7 Nonideal (Real) Systems
4.02.8 Influence of Degree of Polymerization
4.02.9 Influence of Phase Separation
4.02.10 Final Remarks on the Thermodynamic Polymerizability
4.02.11 Kinetic Polymerizability
4.02.12 Kinetic Polymerizability versus Macroions and Macroion Pairs in Propagation
4.02.13 Outlook
REFERENCES
4.03. Living Ring-Opening Olefin Metathesis Polymerization
REFERENCES
4.04. Ring–Chain Equilibria in Ring-Opening Polymerization
4.04.1 Phenomenon of the Ring–Chain Equilibria in Ring-Opening Polymerization
4.04.2 Thermodynamics of the Ring–Chain Equilibria in ROP
4.04.3 Thermodynamics of Ring–Chain Equilibria in Copolymerization
4.04.4 Effects of Pressure and Solvents on the Ring–Chain Equilibria
4.04.5 Kinetics of the Ring–Chain Equilibria in ROP
4.04.6 Ring–Chain Equilibria in Selected ROP Systems
4.04.7 Conclusions and Outlook
REFERENCES
4.05. Equilibrium Copolymerization in Ring-Opening Polymerization
4.05.1 Phenomenon of the Equilibrium Copolymerization in Ring-Opening Polymerization
4.05.2 The Concept of the Equilibrium Copolymerization
4.05.3 Copolymerization Equilibrium
4.05.4 Thermodynamics of Copolymerization
4.05.5 Determination of the Equilibrium Constants on the Basis of the Analysis of the Copolymerization Equilibrium
4.05.6 Selected Examples of the Equilibrium Copolymerization
4.05.7 Conclusions and Outlook
REFERENCES
4.06. Organocatalyzed Ring-Opening Polymerizations
4.06.1 Introduction
4.06.2 Metal-Free Initiated versus Metal-Free Organocatalyzed Polymerizations
4.06.3 Organocatalytic Platforms, Monomer Candidates, and Related Mechanisms
4.06.4 Polymerizations Catalyzed by 4-(Dialkylamino)pyridines
4.06.5 Polymerizations Catalyzed by Amidines
4.06.6 Polymerizations Catalyzed by TUs and TU-Amino Derivatives
4.06.7 Polymerizations using Phosphorus-Based Catalysts: Phosphines and Phosphazenes
4.06.8 Polymerizations Catalyzed by NHCs
4.06.9 Polymerization Catalyzed by Weak, Strong, and ‘Super Strong’ Bronsted Acids
4.06.10 Conclusion
REFERENCES
4.07. Anionic Ring-Opening Polymerization of Epoxides and Related Nucleophilic Polymerization Processes
4.07.1 Introduction
4.07.2 Anionic Epoxide Polymerization Initiated by Alkali Metal Derivatives
4.07.3 Initiation by Organic Bases as Initiators
4.07.4 Coordination Anionic Polymerization
4.07.5 Polymerization Involving Monomer Activation by a Lewis Acid Additive
4.07.6 Summary
REFERENCES
4.08. Cationic Ring-Opening Polymerization of Cyclic Ethers
4.08.1 General Considerations
4.08.2 CROP of Oxiranes
4.08.3 CROP of Oxetanes
4.08.4 CROP of THFs (Oxolanes)
4.08.5 Outlook
REFERENCES
4.09. Stereoselective Ring-Opening Polymerization of Epoxides
4.09.1 Introduction
4.09.2 Basic Concepts in Stereoselective Epoxide Polymerization
4.09.3 Stereoselective Epoxide Polymerization
4.09.4 Conclusion/Outlook
REFERENCES
4.10. Ring-Opening Polymerization of Cyclic Acetals
4.10.1 Introduction
4.10.2 Mechanism of Homogeneous Polymerization of Cyclic Acetals
4.10.3 Heterogeneous Polymerization of 1,3,5-Trioxane
Outlook
REFERENCES
4.11. ROP of Cyclic Esters. Mechanisms of Ionic and Coordination Processes
4.11.1 Introduction
4.11.2 Thermodynamics of ROP of Cyclic Esters
4.11.3 Kinetics of the ROP of Cyclic Esters
4.11.4 Livingness of Polymerization in Processes Initiated with Multivalent Metal Alkoxides
4.11.5 Extent of Molar Mass Control in Processes Initiated with Multivalent Metal Alkoxides
4.11.6 Controlled Polymerization of Cyclic Esters Initiated with Single-Site Metal Alkoxides
4.11.7 Transfer Processes in the Anionic and Coordination Polymerizations of Cyclic Esters
4.11.8 Stereochemically Asymmetric ROP of Cyclic Esters
4.11.9 Conclusions
REFERENCES
4.12. ROP of Cyclic Carbonates and ROP of Macrocycles
4.12.1 Introduction
4.12.2 Synthesis of Cyclic Carbonates
4.12.3 Polymerization of Aliphatic Cyclic Carbonates
4.12.4 Copolymerization of Cyclic Carbonates with Other Heterocyclic Monomers
4.12.5 Polymerization of Cyclic Thiocarbonates
4.12.6 Polymerization of Macrocycles
4.12.7 Conclusions
REFERENCES
4.13. ROP of Cyclic Amines and Sulfides
4.13.1 Introduction
4.13.2 Cyclic Amines
4.13.3 Cyclic Sulfides
4.13.4 Conclusions and Outlook
REFERENCES
4.14. Ring-Opening Polymerization of Cyclic Amides (Lactams)
4.14.1 Introduction
4.14.2 Lactams and Their Polymerizability
4.14.3 Outline of Lactam Polymerization Routes
4.14.4 Hydrolytic Polymerization
4.14.5 Cationic Polymerization
4.14.6 Acidolytic and Aminolytic Polymerizations
4.14.7 Anionic Polymerization
4.14.8 Enzymatic Polymerization
4.14.9 Spontaneous Polymerization
4.14.10 Anionic Polymerization of CL
4.14.11 Anionic Polymerization of Other Lactams
4.14.12 Anionic Copolymers
4.14.13 Industrial Applications
REFERENCES
4.15. Polymerization of Oxazolines
4.15.1 Introduction
4.15.2 Cationic Ring-Opening Polymerization
4.15.3 Ring-Opening Polyaddition
4.15.4 ROPA for Polysaccharide Synthesis
4.15.5 Ring-Opening Polymerizations of Other Oxazoline Derivative Monomers
4.15.6 Sythesis of Functional Polymers via CROP Process and Their Applications
REFERENCES
4.16. Ring-Opening Polymerization of Amino Acid -Carboxyanhydrides
4.16.1 Introduction
4.16.2 Polypeptide Synthesis using NCAs
4.16.3 Copolypeptide Synthesis via ROP
4.16.4 Side-Chain Functionalized Polypeptides
4.16.5 Poly(β-Peptides)
4.16.6 Polypeptide Deprotection and Purification
4.16.7 Conclusions
REFERENCES
4.17. Polymerization of Cyclic Siloxanes, Silanes, and Related Monomers
4.17.1 Monomers Polymerizable by Breaking the Siloxane Bonds
4.17.2 Ring-Opening Polymerization of Cyclic Organosilicon Monomers Not Involving Si–O Bond Cleavage
4.17.3 Final Remarks
REFERENCES
4.18. Ring-Opening Polymerization of Cyclic Phosphorus Monomers
4.18.1 Scope of the Chapter
4.18.2 Polymerization of Cyclic Organophosphorus Compounds
4.18.3 Polyaddition
4.18.4 Transformation of Poly(alkylene phosphate)s
4.18.5 Some Properties and Applications of Poly(alkylene phosphate)s
4.18.6 Polymerization of Cyclic Inorganic P-Containing Compounds
4.18.7 Some Properties and Applications of Linear Poly(organophosphazene)s
4.18.8 Outlook
REFERENCES
4.19. Radical Ring-Opening Polymerization
4.19.1 General
4.19.2 Cycloalkanes
4.19.3 Cyclic Ethers and Cyclic Sulfides
4.19.4 Cyclic Acetals
4.19.5 Spiroorthocarbonates and Spiroorthoesters
4.19.6 α-exo-Methylene Lactones
4.19.7 Cyclic Sulfones with Vinyl Group
4.19.8 Controlled Radical Ring-Opening Polymerization
4.19.9 Summary
REFERENCES
4.20. Architectures of Polymers Synthesized using ROMP
4.20.1 Introduction
4.20.2 Catalysts (Grubbs and Schrock Type)
4.20.3 Basic Categories
4.20.4 Monomers
4.20.5 Linear Architectures
4.20.6 Polyacetylene
4.20.7 Diblocks/Triblocks
4.20.8 Random
4.20.9 Alternating
4.20.10 Cyclic
4.20.11 Grafted
4.20.12 Polyalkynes
4.20.13 Nano
4.20.14 Micelles
4.20.15 Polyrotaxanes and Polycatenane
4.20.16 Dendrimers
4.20.17 Star Polymers
4.20.18 Other
4.20.19 Conclusion
REFERENCES
4.21. High-Molecular-Weight Poly(ethylene oxide)
4.21.1 Introduction
4.21.2 Oxirane Polymerization
4.21.3 Anionic Coordination Polymerization
4.21.4 Applications of High-MW Polyoxiranes
REFERENCES
4.22. Nonlinear Macromolecules by Ring-Opening Polymerization
4.22.1 Introduction
4.22.2 Background and History
4.22.3 Specific Concepts in the Synthesis of Nonlinear Polymers by Ring-Opening Polymerization
4.22.4 Complex Polymer Architectures Containing Nonlinear Macromolecules Generated by ROP
4.22.5 Conclusion and Perspectives
REFERENCES
4.23. Current and Forthcoming Applications of ROMP-Derived Polymers
4.23.1 Introduction to Ring-Opening Metathesis Polymerization
4.23.2 Initiators for ROMP
4.23.3 1-Alkyne Polymerization
4.23.4 Supports
4.23.5 Summary
REFERENCES
4.24. Chain Extension by Ring Opening
4.24.1 General
4.24.2 Chain Extension
4.24.3 Diepoxides
4.24.4 Cyclic Imino Ethers
4.24.5 Cyclic Anhydrides
4.24.6 Bisoxazolinones
4.24.7 Coupling with Release of Blocking Groups
4.24.8 Mixed Systems
4.24.9 Conclusions
REFERENCES
4.25. Ring-Opening Dispersion Polymerization
4.25.1 Introduction
4.25.2 Cationic Ring-Opening Dispersion Polymerization
4.25.3 Anionic and Pseudoanionic Ring-Opening Dispersion Polymerization
4.25.4 Practical Importance of Ring-Opening Dispersion Polymerization
REFERENCES
4.26. Ring-Opening Metathesis Polymerization in the Synthesis of Conjugated Polymers
4.26.1 Introduction
4.26.2 Ring-Opening Polymerization of Monocyclic Polyenes
Summary
REFERENCES
4.27. Oligomeric Poly(ethylene oxide)s. Functionalized Poly(ethylene glycol)s. PEGylation
4.27.1 Introduction
4.27.2 Properties of PEGs
4.27.3 Chemistry of PEGylation
4.27.4 PEG Conjugation to Peptides and Proteins
4.27.5 PEG Conjugation with Small Drugs
4.27.6 PEGylated Dendrimers as Drug Delivery Systems
4.27.7 PEGylated Inorganic–Organic Core-Shell Nanoparticles
REFERENCES
4.28. Current and Forthcoming Applications of ROMP Polymers – Biorelated Polymers
4.28.1 Bioactive Polymers from the Ring-Opening Metathesis Polymerization
REFERENCES
4.29. Polyphosphoesters
4.29.1 Introduction and Historical Background
4.29.2 Controlled Syntheses of PPEs by Ring-Opening Polymerization
4.29.3 Topological Structure of PPE
4.29.4 Thermoresponsive PPEs
4.29.5 Functional PPEs
4.29.6 Biomedical Applications of PPEs
4.29.7 Conclusions and Outlook
REFERENCES
4.30. Industrial Applications of ROMP
4.30.1 Introduction
4.30.2 Olefin Metathesis in the Petrochemical Industry
4.30.3 Polymer Modification
4.30.4 ROMP Polymers Based on Dicyclopentadiene
4.30.5 Linear Polyalkenamers
4.30.6 Conclusion
REFERENCES
4.31. Ring-Opening Polymerization of Cyclic Esters
4.31.1 Introduction
4.31.2 ROP of Cyclic Esters: Generalities
4.31.3 Industrial Aliphatic Polyesters Implemented by ROP
4.31.4 Conclusions and Outlook
REFERENCES
4.32. Polymerization Kinetic Modeling and Macromolecular Reaction Engineering
4.32.1 Introduction
4.32.2 Stepwise Polymerization
4.32.3 Free-Radical Polymerization
4.32.4 Ionic Polymerization
4.32.5 Controlled Radical Polymerization
4.32.6 Ziegler–Natta Polymerization
4.32.7 Metallocene Polymerization
4.32.8 Emulsion Polymerization
4.32.9 Dispersion and Suspension Polymerization
4.32.10 Copolymerization
4.32.11 Semibatch Control of Copolymer Composition
4.32.12 Continuous Polymerization Processes
4.32.13 Industrial Examples of Polymer Production
4.32.14 Conclusion and Outlook
REFERENCES
4.33. Template Polymerization
4.33.1 Introduction
4.33.2 Mechanism of Template Polymerization
4.33.3 Radical Template Polymerization and Copolymerization
4.33.4 Template Polycondensation
4.33.5 Ring-Opening Template Polymerization
4.33.6 Special Kinds of Template Polymerization
4.33.7 Products of Template Polymerization and Potential Applications
4.33.8 Polymerization in Confined Space
4.33.9 Conclusion
REFERENCES
4.34. Mechanistic Aspects of Solid-State Polycondensation
4.34.1 Introduction
4.34.2 Direct Solid-State Polycondensation
4.34.3 Post-Solid-State Polycondensation
4.34.4 Conclusions
REFERENCES
4.35. Radical Polymerization at High Pressure
4.35.1 Introduction
4.35.2 Experiments and Data Treatment
4.35.3 Initiation, Propagation, and Termination Rate Coefficients of Radical Polymerization up to High Pressure
4.35.4 High-Pressure Ethene Polymerization
4.35.5 High-Pressure Ethene Copolymerization
4.35.6 Reversible Deactivated Radical Polymerization
4.35.7 Homogeneous-Phase Polymerization in scCO2
4.35.8 Kinetics of Radical Polymerization in Homogeneous Mixture with scCO2
REFERENCES
4.36. Electroinitiated Polymerization
4.36.1 Introduction
4.36.2 Electroinitiated Polymerization of Vinyl Monomers for Promoting Coatings Adhesive to Metals
4.36.3 Electropolymerization of Conjugated Polymers as Active Layers in Advanced Devices
4.36.4 Electrografting of Conjugated Polymers
4.36.5 Conclusion
REFERENCES
4.37. Photopolymerization
4.37.1 Introduction
4.37.2 Photochemical Condensation Reactions
4.37.3 Photoinduced Active Center Polymerizations
4.37.4 Conclusions
REFERENCES
4.38. Frontal Polymerization
4.38.1 What Is Frontal Polymerization?
4.38.2 Photofrontal Polymerization
4.38.3 Isothermal Frontal Polymerization
4.38.4 Cryogenic Fronts
4.38.5 Thermal Frontal Polymerization
4.38.6 Conclusions
REFERENCES
4.39. Microwave-Assisted Polymerization
4.39.1 Interaction of Microwaves with Materials
4.39.2 Chain-Growth Polymerization Reactions
4.39.3 Step-Growth Polymerization Reactions
4.39.4 Polymer Composites and Nanocomposites
4.39.5 Scaling-Up Reactions under Microwave Irradiation
REFERENCES
VOLUME 5. Polycondensation
5.01. Introduction and Overview
5.01.1 Introduction
5.01.2 Overview
Principles and Opportunities
5.02. Principles of Step-Growth Polymerization (Polycondensation and Polyaddition)
5.02.1 Introduction and Historical Perspective
5.02.2 Structure–Property Relationships in Step-Growth Polymers
5.02.3 Synthesis of Step-Growth Polymers
5.02.4 Future Direction for Step-Growth Polymers
5.02.5 Concluding Remarks
REFERENCES
5.03. Opportunities in Bio-Based Building Blocks for Polycondensates and Vinyl Polymers
5.03.1 Introduction
5.03.2 Monomers
5.03.3 Approaches in Commodity Polymers
5.03.4 Approaches in Engineering Polymers
5.03.5 Approaches for High Performance Polymers
5.03.6 Conclusions
REFERENCES
5.04. Sequence Control in One-Step Polycondensation
5.04.1 Introduction
5.04.2 Analysis of Constitutional Regularity
5.04.3 Sequential Polymers from Symmetric and Nonsymmetric Monomers
5.04.4 Sequential Polymers from Two Nonsymmetric Monomers
5.04.5 Sequential Polymer from Three Nonsymmetric Monomers
5.04.6 Conclusions
REFERENCES
Novel Synthetic Approaches
5.05. Nonstoichiometric Polycondensation
5.05.1 Introduction
5.05.2 Nonstoichiometric Polycondensation Caused by the Change in Reactivity
5.05.3 Nonstoichiometric Polycondensation Caused by the Change in the Higher Structure of Polymers
5.05.4 Conclusion
REFERENCES
5.06. Chain-Growth Condensation Polymerization
5.06.1 Introduction
5.06.2 p-Substituted Aromatic Polymers
5.06.3 m-Substituted Aromatic Polymers
5.06.4 Nonaromatic Polymers
5.06.5 π-Conjugated Polymers
5.06.6 Future Remarks
REFERENCES
5.07. Oxidative Coupling Polymerization
5.07.1 Introduction
5.07.2 Oxidative Polymerization of Phenols and Naphthols
5.07.3 Thiophenols and Their Derivatives
5.07.4 Anilines
5.07.5 Pyrroles
5.07.6 Thiophenes
5.07.7 Other Aromatic Heterocycles
5.07.8 Aromatic Hydrocarbons
5.07.9 Other Monomers
5.07.10 Conclusion
REFERENCES
5.08. Condensation Polymers via Metal-Catalyzed Coupling Reactions
5.08.1 Introduction
5.08.2 An Overview of Conjugated Polymers
5.08.3 Metal-Catalyzed Carbon–Carbon Bond Forming Reactions
5.08.4 Metathesis Reactions – Acyclic Diene and Acyclic Diyne Metathesis
5.08.5 An Overview of Various Polymers Prepared Using Metal-Mediated Coupling Reactions
5.08.6 Conclusion
REFERENCES
5.09. Advances in Acyclic Diene Metathesis Polymerization
5.09.1 Introduction
5.09.2 Functional Polymers and Materials via ADMET
5.09.3 Exotic Polymer Structures
5.09.4 Precision Polyolefins
5.09.5 Meeting the Benchmark: Linear Acyclic Diene Metathesis Polyethylene
5.09.6 Precision Halogenated Polyolefins
5.09.7 Precision Polyolefins with Alkyl Branches
5.09.8 Precision Polyolefins with Ether Branches
5.09.9 Precision Polyolefins with Pendant Acid Groups
5.09.10 Precision Amphiphilic Copolymers
5.09.11 Summary and Outlook
REFERENCES
5.10. Enzymatic Polymerization
5.10.1 Introduction
5.10.2 Enzymatic Polycondensation
5.10.3 Enzymatic Polyaddition
5.10.4 Summary
REFERENCES
5.11. Nonlinear Polycondensates
5.11.1 Introduction
5.11.2 Insoluble Cross-Linked Polymers
5.11.3 Soluble Branched Polymers
REFERENCES
5.12. Post-Polymerization Modification
5.12.1 Historical Background and Definitions
5.12.2 General Considerations
5.12.3 Functional Groups Employed in Chemical Modifications
5.12.4 Conclusions and Outlook
REFERENCES
5.13. Supramolecular Polymers
5.13.1 Introduction
5.13.2 Metallo-supramolecular Polymers
5.13.3 Supramolecular Polymers Based on Ionic Interactions
5.13.4 Supramolecular Polymers Based on Hydrogen Bonding
5.13.5 Supramolecular Polymers Based on Multiple Supramolecular Motifs
5.13.6 Conclusion and Outlook
REFERENCES
Chemistry and Technology of Polycondensates
5.14. Chemistry and Technology of Step-Growth Polyesters
5.14.1 Introduction
5.14.2 Synthetic Processes for Polyesters
5.14.3 Aliphatic Polyesters
5.14.4 Aryl–Alkyl Polyesters
5.14.5 All-aromatic Polyesters
5.14.6 Summary
REFERENCES
Relevant Website
5.15. Biodegradable Polyesters
5.15.1 Introduction
5.15.2 Synthetic Routes to Polyesters
5.15.3 Classification, Biodegradability, and Applications of Polyesters
5.15.4 Different Macromolecular Architectures and Speciality Biodegradable Polyesters
5.15.5 Biodegradable Polyester Nanoparticles
5.15.6 Conclusions
REFERENCES
5.16. Polycarbonates
5.16.1 Introduction
5.16.2 Historical Development of PCs
5.16.3 Properties and Uses of PCs
5.16.4 Synthesis of PCs
5.16.5 Interfacial Synthesis Process (Phosgene Process)
5.16.6 Transesterification Synthesis Process (Melt or Solventless Process)
5.16.7 ROP of Cyclic Oligomers
5.16.8 Oxidative Carbonylation Process (One-Step Process)
5.16.9 CO2 Process (Synthesis Process Using Carbon Dioxide or Carbonates)
5.16.10 Conclusion
REFERENCES
5.17. Aromatic Polyethers, Polyetherketones, Polysulfides, and Polysulfones
5.17.1 Introduction
5.17.2 Poly(arylene ether)s
5.17.3 Poly(arylene ether ketone)s
5.17.4 Poly(arylene sulfone)s
5.17.5 Poly(arylene sulfide)s
REFERENCES
5.18. Chemistry and Technology of Polyamides
5.18.1 Introduction
5.18.2 Hydrolytically Synthesized Fully Aliphatic Polyamides
5.18.3 Semiaromatic Polyamides
5.18.4 Segmented Block Copolymers of Polyamides and Elastomeric Polyethers
5.18.5 Polyamide Blends
5.18.6 Applications of Polyamides
5.18.7 Summary, Main Conclusions, and Future Perspectives
REFERENCES
5.19. Lyotropic Polycondensation including Fibers
5.19.1 Introduction
5.19.2 Aramids
5.19.3 Polybenzazole
5.19.4 Beyond PBZ
REFERENCES
5.20. Polyimides
5.20.1 Introduction
5.20.2 Conventional PI
5.20.3 Functional PI
5.20.4 Conclusions
REFERENCES
5.21. High-Performance Heterocyclic Polymers
5.21.1 Introduction
5.21.2 Polyazoles
5.21.3 Polybenzazoles
5.21.4 Molecular Composites Based on Rigid-Rod Polybenzazoles
5.21.5 Aromatic Polyimides
5.21.6 Ladder and Semi-ladder Polymers
REFERENCES
5.22. Polyphenylenes, Polyfluorenes, and Poly(phenylene vinylene)s by Suzuki Polycondensation and Related Methods
5.22.1 Introduction
5.22.2 Synthesis Background and Strategy
5.22.3 Fundamental Synthetic Aspects
5.22.4 Recent Progress
5.22.5 Selected Examples
5.22.6 Poly(phenylene vinylene)s
5.22.7 Conclusions and Outlook
REFERENCES
5.23. Metal-Containing Macromolecules
5.23.1 Introduction
5.23.2 Coordination Polymers
5.23.3 Polymers Containing Sandwich Complexes
5.23.4 Macromolecules Containing Metal Carbonyl Complexes
5.23.5 Transition Metal Polyynes
5.23.6 Metal–Metal Bonded Systems
5.23.7 Conclusion
REFERENCES
5.24. Phosphorus-Containing Dendritic Architectures
5.24.1 Introduction
5.24.2 Syntheses of Phosphorus-Containing Dendrimers
5.24.3 Syntheses of Phosphorus-Containing Dendrons
5.24.4 Syntheses of Special Phosphorus-Containing Dendritic Architectures
5.24.5 Conclusions
REFERENCES
5.25. Epoxy Resins and Phenol-Formaldehyde Resins
5.25.1 Introduction of Epoxy Resins
5.25.2 Basic Characteristics of Epoxy Resins
5.25.3 Synthesis of Epoxy Resins
5.25.4 Curing of Epoxy Resin
5.25.5 General Properties of Epoxy Resins
5.25.6 Introduction of Phenolic resins
5.25.7 Novolac
5.25.8 Resol
5.25.9 Transformation of Phenolics
5.25.10 Natural Products as Phenolics
5.25.11 Modification by Alloys and Co-curing
5.25.12 Hybrids and Composites
5.25.13 Conclusion
REFERENCES
5.26. High-Temperature Thermosets
5.26.1 Introduction
5.26.2 Thermosetting Monomers and Oligomers
5.26.3 Thermosetting Liquid Crystals
5.26.4 Concluding Remarks
REFERENCES
VOLUME 6. Macromolecular Architectures and Soft Nano-Objects
6.01. Introduction
6.01.1 Introduction
6.01.2 Topology
6.01.3 Composition and Functionality
6.01.4 Shape-Controlled Polymers and Nanoobjects
Topology
6.02. Synthesis and Properties of Macrocyclic Polymers
6.02.1 Introduction
6.02.2 Synthesis of Cyclic Macromolecules
6.02.3 Physical Properties of Cyclic Polymers
REFERENCES
6.03. Polymers with Star-Related Structures
6.03.1 Synthesis of Star Polymers
6.03.2 Properties of Star Polymers
6.03.3 Applications of Star Polymers
6.03.4 Conclusions
REFERENCES
6.04. Dendrimers
6.04.1 Introduction
6.04.2 Synthesis of Dendrimers
6.04.3 Properties and Characterization of Dendrimers
6.04.4 Biomedical Applications of Dendrimers
6.04.5 Commercial Applications and Sources
6.04.6 Conclusions and Outlook in the Research Area
REFERENCES
6.05. Hyperbranched Polymers
6.05.1 Introduction: Definitions and Synthetic Strategies
6.05.2 Theoretical Aspects: Degree of Branching
6.05.3 Polycondensation and Polyaddition
6.05.4 Complex Architectures Containing Hyperbranched Blocks
6.05.5 Conclusion and Outlook
REFERENCES
6.06. Molecular Brushes
6.06.1 Introduction
6.06.2 Synthesis
6.06.3 Properties
6.06.4 Applications
6.06.5 Closing Remarks and Perspectives
REFERENCES
6.07. Spherical Polymer Brushes
6.07.1 Introduction
6.07.2 Preparation of Brushes Anchored to Spherical Supports
6.07.3 Characterization
6.07.4 Physical Properties
6.07.5 Applications
6.07.6 Summary
REFERENCES
6.08. Model Networks and Functional Conetworks
6.08.1 Introduction
6.08.2 Definitions
6.08.3 Model Networks
6.08.4 Quasi-Model Networks
6.08.5 Amphiphilic Conetworks
6.08.6 Conclusions
REFERENCES
6.09. Polymer Nanogels and Microgels
6.09.1 Aqueous Microgels
6.09.2 Synthetic Routes
6.09.3 Characterization by Scattering Methods
6.09.4 Applications of Microgels
REFERENCES
Composition and Functionality
6.10. Controlled End-Group Functionalization (Including Telechelics)
6.10.1 Introduction
6.10.2 Characterization Methods for Chain-End-Functionalized Polymers
6.10.3 Anionic Synthesis of Chain-End-Functionalized Polymers
6.10.4 Radical Synthesis of Chain-End-Functionalized Polymers
6.10.5 Cationic Synthesis of Chain-End-Functionalized Polymers
6.10.6 Conclusion
REFERENCES
6.11. Robust, Efficient, and Orthogonal Chemistries for the Synthesis of Functionalized Macromolecules
6.11.1 Introduction
6.11.2 Functional Polymers and Architectures
6.11.3 Step Growth Polymerization via CuAAC or TEC
6.11.4 Polymer Backbone and Pendant Group Functionalization
6.11.5 Star and Miktoarm Architectures
6.11.6 Dendrimers
6.11.7 Cross-linked Network Architectures
6.11.8 Three-Dimensional (3D) Objects
6.11.9 Conclusions and Outlook
REFERENCES
6.12. Controlled Composition
6.12.1 Introduction
6.12.2 Copolymerization Models
6.12.3 Statistical Copolymers
6.12.4 Alternating Copolymers
6.12.5 Solvent Effects
6.12.6 Copolymers versus Homopolymers
6.12.7 Gradient Copolymers
6.12.8 Properties of Copolymers
6.12.9 Epilogue
REFERENCES
6.13. Well-Defined Block Copolymers
6.13.1 Introduction
6.13.2 Principles of Block Copolymerization
6.13.3 Linear Topologies
6.13.4 Synthetic Methods Involving a Single Polymerization Mechanism
6.13.5 Synthetic Methods through Mechanistic Transformations
6.13.6 Summary
REFERENCES
6.14. Graft Copolymers and Comb-Shaped Homopolymers
6.14.1 Introduction
6.14.2 Some General Remarks on Graft Copolymers
6.14.3 Polymerization Processes Aimed to Be Used in Graft Copolymer Synthesis
6.14.4 Principles of Graft Copolymer Synthesis
6.14.5 ‘Grafting Onto’ Methods
6.14.6 ‘Grafting From’ Methods
6.14.7 ‘Grafting Through’ Processes: The Macromonomer Method
6.14.8 Other Grafting Processes
6.14.9 Conclusions
REFERENCES
6.15. Synthetic–Biological Hybrid Polymers
6.15.1 Introduction and Potential Scope of Biohybrid Polymers
6.15.2 Strategies to Synthesize Biohybrid Polymers
6.15.3 Implementing Biopolymer Properties into Synthetic Polymer Systems
6.15.4 Conclusion and Outlook
REFERENCES
6.16. Dynamic Supramolecular Polymers
6.16.1 Introduction
6.16.2 Linear SPs
6.16.3 Multivalent Supramolecular Assemblies
6.16.4 Hierarchical Assemblies
6.16.5 Conclusions and Outlook
REFERENCES
Shape-Controlled Polymers and Nano-Objects
6.17. Stereocontrolled Chiral Polymers
6.17.1 Introduction
6.17.2 Helical Polymers
6.17.3 Optically Active Polymers with Main-Chain Configurational Chirality
6.17.4 Enantiomer-Selective Polymerization
6.17.5 Summary
REFERENCES
6.18. Conformation-Dependent Design of Synthetic Functional Copolymers
6.18.1 Introduction
6.18.2 Theoretical Approaches
6.18.3 Synthesis of Designed Copolymers
6.18.4 Concluding Remarks
REFERENCES
6.19. Rigid–Flexible and Rod–Coil Copolymers
6.19.1 Introduction
6.19.2 Synthetic Aspects
6.19.3 Organizational Features
6.19.4 Applications
6.19.5 Alternating Rigid–Flexible Polymers
6.19.6 Conclusions
REFERENCES
6.20. Individual Nano-Objects Obtained via Hierarchical Assembly of Polymer Building Blocks
6.20.1 Introduction to Nano-Objects
6.20.2 Synthetic Methodologies for the Preparation of Nano-Objects
6.20.3 Assembly of Nano-Objects into Complex Hierarchical Structures
6.20.4 Manipulation of Nano-Objects
6.20.5 Conclusions and Outlook
REFERENCES
VOLUME 7. Nanostructured Polymer Materials and Thin Films
7.01. Introduction
7.02. Block Copolymers in the Condensed State
7.02.1 Introduction
7.02.2 Amorphous Block Copolymers
7.02.3 Semicrystalline Block Copolymers
7.02.4 Mechanical Properties of Block Copolymers
7.02.5 Alignment of Block Copolymer Morphologies under External Fields
7.02.6 Block Copolymer Thin Films
7.02.7 Summary
REFERENCES
7.03. Block Copolymer Thin Films
7.03.1 Introduction
7.03.2 Symmetric BCP Thin Films: Lamellar Morphologies
7.03.3 Symmetric BCP Thin Films: Phase-Mixed Morphology
7.03.4 Asymmetric BCP Thin Films: Cylindrical Morphologies
7.03.5 Asymmetric BCP Thin Films: Spherical Morphologies
7.03.6 BCP Thin Films: Controlled Interfacial Interactions
7.03.7 BCP Thin Films: Electric Fields
7.03.8 BCP Thin Films: Magnetic Fields
7.03.9 BCP Thin Films: Solvent Evaporation
7.03.10 BCP Thin Films: Gradient Fields
7.03.11 BCP Thin Films: Surface Topography
7.03.12 BCP Thin Films: Faceted Surfaces
7.03.13 BCP Thin Films: Chemical Patterning
7.03.14 Nanopatterning from BCP Thin Films
7.03.15 Applications: Nanoporous Membrane for Filtration of Viruses
7.03.16 Applications: Nanoreactors
7.03.17 Applications: Nanoscaffolding
7.03.18 Applications: Templates from Nanodots to Nanorods
7.03.19 BCP Thin Films: Summary
REFERENCES
7.04. Block Copolymers under Confinement
7.04.1 Introduction
7.04.2 Block Copolymers under Confinement
7.04.3 Principles of Complex Structure Formation from Block Copolymers under Confinement
7.04.4 Conclusion
REFERENCES
7.05. Assemblies of Polymer-Based Nanoscopic Objects
7.05.1 Introduction
7.05.2 Polymer-Mediated Self-Assembly
7.05.3 Polymer-Templated Self-Assembly
7.05.4 TNP Self-Assembly
REFERENCES
7.06. Self-Assembly of Inorganic Nanoparticles in Polymer-Like Structures
7.06.1 Introduction
7.06.2 Experimental Methods Utilized for the Self-Assembly of NPs in Nanopolymers
7.06.3 Properties of 1D Nanostructures
7.06.4 Applications of 1D Assemblies of NPs
7.06.5 Outlook
REFERENCES
7.07. Hybrid Polymer–Inorganic Nanostructures
7.07.1 Introduction
7.07.2 Block Copolymer Self-Assembly
7.07.3 Nanostructured Diblock Copolymer–Aluminosilicate Nanoparticle Composites: A Model System
7.07.4 Moving from Amorphous to Crystalline Inorganic Materials
7.07.5 Potential Applications of Nanostructured Block Copolymer-Derived Hybrids
7.07.6 Conclusions and Outlook
REFERENCES
7.08. Peptide–Polymer Conjugates Toward Functional Hybrid Biomaterials
7.08.1 Introduction
7.08.2 Peptides/Proteins
7.08.3 Advantages of Peptide–Polymer Conjugates
7.08.4 Synthesis
7.08.5 Self-Assembly of Peptide–Polymer Conjugates
7.08.6 Perspectives and Outlook
7.08.7 Conclusion
REFERENCES
7.09. Layer-by-Layer Assembly of Multifunctional Hybrid Materials and Nanoscale Devices
7.09.1 Introduction
7.09.2 Types of Interactions and Corresponding Materials Used for LbL
7.09.3 Substrates
7.09.4 LbL Deposition Techniques
7.09.5 Characterization Methods
7.09.6 Applications
7.09.7 Conclusion and Perspective
REFERENCES
7.10. Nanostructured Electrospun Fibers
7.10.1 Introduction
7.10.2 Formation of Fibers
7.10.3 Beaded Fibers
7.10.4 Core–shell and Hollow Fibers
7.10.5 Porous and Wrinkled Fibers
7.10.6 Block Copolymer Fibers
7.10.7 Applications of Electrospun Fibers
7.10.8 Conclusions and Perspectives
REFERENCES
7.11. Soft Lithographic Approaches to Nanofabrication
7.11.1 Introduction
7.11.2 Materials and Methods
7.11.3 Printing
7.11.4 Molding
7.11.5 2D and 3D Fabrication using Optical Soft Lithography
7.11.6 Nanoskiving
7.11.7 Conclusions
REFERENCES
7.12. Block Copolymer Thin Films on Patterned Substrates
7.12.1 Introduction
7.12.2 Block Copolymer Thin films on Topographical Prepatterns
7.12.3 Block Copolymer Thin Films on Chemical Prepatterns
7.12.4 Theory and Simulation of Block Copolymer Thin Films on Patterned Substrates
7.12.5 Future Issues for Block Copolymer Thin Films on Pattern Substrates
REFERENCES
7.13. Nanoimprint Lithography of Polymers
7.13.1 Introduction
7.13.2 Major Accomplishments of Nanoimprint Lithography
7.13.3 Technical Issues of Nanoimprint Lithography
7.13.4 Applications
7.13.5 Conclusions and Outlook
REFERENCES
7.14. Modeling Mixtures of Nanorods and Polymers
7.14.1 Introduction
7.14.2 Nanorod Polymer Composites
7.14.3 Mechanical Properties
7.14.4 Electrical Properties
7.14.5 Photovoltaic Properties
7.14.6 Conclusions
REFERENCES
7.15. Sterically Stabilized Nanoparticles in Solutions and at Interfaces
7.15.1 Introduction – Sterically Stabilized Nanoparticles: Synthesis and the Role of Surface-Bound Ligands
7.15.2 Synthesis of Ligand-Stabilized Nanoparticles
7.15.3 Nanoparticles at the Air–Liquid Interface
7.15.4 Sterically Stabilized Nanoparticles at Liquid–Liquid Interfaces: From Particle-Stabilized Emulsions to Robust Materials
7.15.5 Controlling Miscibility with Bijels: From Simulation to Experiments
7.15.6 Sterically Stabilized Nanoparticles in Polymer Matrices – From Dispersion to Interfacial Pinning
REFERENCES
7.16. Quasi-One-Component Polymer Nanocomposites Based on Particle Brush Assembly
7.16.1 Introduction
7.16.2 Structure of Particle Brush Systems
7.16.3 Particle Brush-Based Quasi-One-Component Nanocomposites
7.16.4 Conclusion
REFERENCES
7.17. Electrical Conductivity of Polymer Nanocomposites
7.17.1 Introduction
7.17.2 Applications of Electrically Conductive Polymer Nanocomposites
7.17.3 Percolation Theory and Simulation
7.17.4 Mechanisms of Electrical Transport
7.17.5 Filler Effects
7.17.6 Effects of Matrix Properties
7.17.7 Dispersion/Microstructure
7.17.8 Concluding Remarks and Future Directions
REFERENCES
7.18. Polymer Dynamics in Constrained Geometries
7.18.1 Introduction
7.18.2 The Nature of Confinement
7.18.3 Techniques to Quantify Dynamics
7.18.4 Physical Mechanisms of Confinement
REFERENCES
7.19. Polymer Nanomechanics
7.19.1 Introduction
7.19.2 Preliminary Mechanics Concepts
7.19.3 Contact Mechanics
7.19.4 Alternatives to Hertzian Mechanics
7.19.5 Single-Molecule Extension Mechanics
7.19.6 Summary
REFERENCES
VOLUME 8. Polymers for Advanced Functional Materials
8.01. Introduction – Applications of Polymers
8.01.1 Synopsis of Chapters
8.01.2 Closing Remarks
8.02. Top-Down versus Bottom-Up Patterning of Polymers
8.02.1 Block Copolymer Self-Assembly for Patterning Applications
8.02.2 Block Copolymer Phase Behavior
8.02.3 Block Copolymer Templates
8.02.4 The Intersection of Block Copolymer Self-Assembly with Photolithography
8.02.5 Outlook and Summary
REFERENCES
8.03. Photoresists and Advanced Patterning
8.03.1 Introduction
8.03.2 Basic Properties and Requirements of Photoresists
8.03.3 Classification of Resists
8.03.4 Introduction to Early Optical Photoresists: Cyclized Rubber and DNQ–Novolac Resists
8.03.5 Introduction to Chemically Amplified Photoresists
8.03.6 Photochemical Acid Generators
8.03.7 Polymeric Materials and Mechanisms for CARs
8.03.8 e-Beam Resists
8.03.9 Conclusions
REFERENCES
8.04. Rapid Prototyping
8.04.1 Basic Principles of Rapid Prototyping
8.04.2 Photopolymerization-Based RP Technologies
8.04.3 Extrusion-Based RP Processes
8.04.4 Powder-Based RP Processes
8.04.5 Laminated Object Manufacturing
8.04.6 Conclusions
REFERENCES
8.05. Polymer-Based Sensors
8.05.1 Polymers in Organic Electronics
8.05.2 Gas-Phase Sensing
8.05.3 Liquid-Phase Sensing
8.05.4 Conclusions
REFERENCES
8.06. Electroactive Liquid Crystalline Polymers
8.06.1 Introduction
8.06.2 Semiconductive Polymers
8.06.3 Electrooptical Switching of LC Polymers
8.06.4 Actuators
8.06.5 Conclusion
REFERENCES
8.07. Ink-Jet Printing of Functional Polymers for Advanced Applications
8.07.1 Ink-Jet Printing and Its Fundamental Properties
8.07.2 Ink-Jet Printing Functional Materials
8.07.3 Applications of Ink-Jet Printing
8.07.4 Conclusions and Outlook
REFERENCES
8.08. Nanocomposites and Hybrid Materials
8.08.1 Introduction
8.08.2 Nanoscaled Fillers
8.08.3 Nanocomposite Preparation
8.08.4 Applications
8.08.5 Summary
REFERENCES
8.09. Polymer Photonics
8.09.1 Introduction
8.09.2 Second-Order NLO Polymers
8.09.3 Third-Order NLO Polymers
8.09.4 Summary and Outlook
REFERENCES
8.10. Polymer-Based LEDs and Solar Cells
8.10.1 Introduction
8.10.2 Device Issues in Electroluminescent Materials and Full-Color Displays
8.10.3 Material Classes
8.10.4 Hybrid Solar Cells
8.10.5 Conclusions and Outlook
REFERENCES
8.11. Optical Fibers
8.11.1 Introduction
8.11.2 Fundamentals of Fiber Optics
8.11.3 Plastic Optical Fibers
8.11.4 Transmission Properties
8.11.5 Materials
8.11.6 Conclusions
REFERENCES
8.12. Adhesives and Sealants
8.12.1 Adhesives
8.12.2 Adhesive Testing
8.12.3 Pressure-Sensitive Adhesives
8.12.4 Rubber-Based Adhesives
8.12.5 Hot Melt Adhesives
8.12.6 Natural Product-Based Adhesives
8.12.7 Structural Adhesives
8.12.8 Sealants
8.12.9 Future of Adhesives and Sealants
REFERENCES
8.13. Polymer Membranes
8.13.1 Introduction and Historical Background
8.13.2 Membrane Variants and Their Utility
8.13.3 Membrane Formation
8.13.4 Membranes in Gas and Liquid Separations
8.13.5 Barrier Polymers
8.13.6 Membranes in Water Purification Processes
8.13.7 Membranes in Emerging Technologies
REFERENCES
8.14. Polymer Additives
8.14.1 Introduction
8.14.2 Thermo-Oxidative Degradation
8.14.3 Requirements for Polymer Stabilizers
8.14.4 Stabilization against Thermo-Oxidative Degradation
8.14.5 Stabilization of Polymers against Degradation under the Impact of Light
8.14.6 Multifunctional Additive for Engineering Polymers
8.14.7 Metal Ion Deactivators
8.14.8 Acid Scavengers
8.14.9 Analysis of Stabilizers in the Polymer Matrix
REFERENCES
8.15. Stimuli-Responsive Polymer Systems
8.15.1 What Are ‘Responsive Polymers’?
8.15.2 Stimuli-Responsive Polymers
8.15.3 Special Structures of Responsive Polymers
8.15.4 Properties of Responsive Polymers
8.15.5 Responsive Polymers and Their Applications
REFERENCES
8.16. Graphene and Its Synthesis
8.16.1 Introduction and Physical Properties of Graphene
8.16.2 Graphene Synthesis and Characterization
8.16.3 Graphene Nanoribbons
8.16.4 Bottom-Up Organic Synthesis of Graphene Nanostructures
8.16.5 Conclusions
REFERENCES
8.17. Functionalized Carbon Nanotubes and Their Enhanced Polymers
8.17.1 Introduction
8.17.2 CNT Synthesis Techniques
8.17.3 Functionalization of CNTs
8.17.4 CNT–Polymer Nanocomposites
REFERENCES
VOLUME 9. Polymers in Biology and Medicine
9.01. Introduction and Overview
9.01.1 Introduction
9.01.2 Overview
9.02. Lifelike but Not Living
9.02.1 Introduction
9.02.2 Basic Aspects of DNA and RNA Polymers
9.02.3 Three Discoveries That Transformed Nucleic Acid Chemistry
9.02.4 Upper Limits of a Degenerate DNA Synthesis – A Cap on Outcome
9.02.5 Catalytic RNA Cleavage by Ribozymes and DNAzymes
9.02.6 DNAzymes – Deoxyribozymes
9.02.7 M2+-Independent RNA-Cleaving DNAs
9.02.8 RNase A-Catalyzed RNA Cleavage – M2+-Independent Catalytic Perfection
9.02.9 Early Attempts at Expanding the Catalytic Repertoire of Nucleic Acids
9.02.10 Simultaneous Incorporation of Imidazoles and Amines – Selection of M2+-Independent RNase A Mimics
9.02.11 A Comparison of Two Selected M2+-Independent DNAzyme RNase A Mimics
9.02.12 M2+-Independent RNA-Cleaving DNAzymes with Three Modified Nucleosides
9.02.13 Nucleic Acid Diels–Alderases – Modified and Unmodified
9.02.14 Nanoparticle Templation by Modified RNAs
9.02.15 Other Reports of Modified rNTPs and dNTPs for Potential Selection
9.02.16 Non-Nucleobase Modifications – Altered Phosphodiester and Sugar Portions
9.02.17 Nucleobase-Modified Aptamers
9.02.18 Evolving Polymerases
9.02.19 Conclusions
REFERENCES
9.03. Collagen
9.03.1 Introduction
9.03.2 The Collagen Fibril – A Building Block of Extracellular Tissues
9.03.3 Examples of Collagen-Based Natural Tissues
9.03.4 Collagen as Biomaterial
REFERENCES
9.04. Silks
9.04.1 Introduction
9.04.2 Types of Silk Fibers
9.04.3 Material Properties
9.04.4 Composition
9.04.5 Structure
9.04.6 Silk Processing
9.04.7 The Future
REFERENCES
9.05. Elastins
9.05.1 Introduction
9.05.2 Native Elastin Derivatives: Sequence, Structure, and Function
9.05.3 Elastin-Mimetic Polypeptides: Synthesis and Applications
9.05.4 Comparison between Native and Synthetic Elastins
REFERENCES
9.06. Resilin in the Engineering of Elastomeric Biomaterials
9.06.1 Introduction
9.06.2 Native Resilin
9.06.3 Recombinant Resilin-Like Polypeptides
9.06.4 Conclusions and Perspectives
REFERENCES
9.07. Artificial Proteins
9.07.1 Introduction
9.07.2 Protein Biosynthesis and Genetic Engineering of Protein Polymers
9.07.3 Bioinspired Artificial Protein Polymers
9.07.4 Biosynthesis of De Novo-Designed Protein Polymers
9.07.5 Expanding the Scope of Protein Chemistry: Noncanonical Amino Acids
REFERENCES
9.08. Polysaccharides
9.08.1 Introduction
9.08.2 The Chemistry of Carbohydrates
9.08.3 Glycopolymers
9.08.4 Conclusions
REFERENCES
9.09. Poly(hydroxyalkanoate)s
9.09.1 General Introduction
9.09.2 Biosynthesis of PHAs
9.09.3 Structure and Properties of PHAs
9.09.4 Biodegradability of PHAs
9.09.5 Industrial Production of P(3HB) and Its Copolymers
REFERENCES
9.10. Polymers of the Cytoskeleton
9.10.1 Introduction
9.10.2 Cytoskeletal Filament Subunits
9.10.3 Cytoskeletal Assembly
9.10.4 Cytoskeletal-Binding Proteins
9.10.5 Polyelectrolyte Properties: Counterion Cross-Linking
9.10.6 Mechanical Properties of the Cytoskeleton
9.10.7 Active, Nonequilibrium Gels
9.10.8 Conclusions
REFERENCES
9.11. Mechanical Interactions between Cells and Tissues
9.11.1 Introduction
9.11.2 Elasticity of Physiological Microenvironments
9.11.3 Cell-Induced Matrix Deformations
9.11.4 How Deeply Do Cells ‘Feel’? – Experiments
9.11.5 How Deeply Do Cells ‘Feel’? – Computations
9.11.6 Matrix-Mediated Cell–Cell Interactions
9.11.7 Cell Morphology and Cytoskeletal Forces Are Directed by Extracellular Mechanical Cues
9.11.8 Molecular Mechanics in Mechanism: From Forced Unfolding to ‘Heat Shock’ Proteins
9.11.9 Putting It All Together: Microenvironment Elasticity, Cytoskeletal Stress, and Gene Organization
9.11.10 Conclusion
REFERENCES
9.12. Biological Adhesion
9.12.1 Introduction
9.12.2 Bioinspired Fibrillar Adhesives
9.12.3 Bioinspired Wet Adhesives
9.12.4 Other Biological Adhesives as Future Targets of Biomimetic Systems
9.12.5 Conclusion
REFERENCES
9.13. Viral Packaging of Nucleic Acids
9.13.1 Introduction
9.13.2 Physical Models of dsDNA, ssDNA, and RNA
9.13.3 Internal Organization of a Viral Genome
9.13.4 Thermodynamic Forces in the Packaging in Bacteriophages
9.13.5 Electrostatic Dominance in the Assembly of ssRNA Viruses
9.13.6 Ejection Forces and Dynamics
REFERENCES
9.14. Making New Materials from Viral Capsids
9.14.1 Introduction
9.14.2 Capsid-Based Templates for the Generation of Inorganic Materials
9.14.3 Chemical Methods for the Covalent Modification of Viral Capsids
9.14.4 Capsid-Based Materials for Drug Delivery, Diagnostics, and Tissue Engineering
9.14.5 Capsid-Based Materials for Optical and Catalytic Applications
9.14.6 Summary and Future Challenges
REFERENCES
9.15. Peptoid Oligomers
9.15.1 Background
9.15.2 Peptoid-Based Polymers
9.15.3 Applications of Peptoid Polymers
9.15.4 Antimicrobial Peptoids
9.15.5 Concluding Remarks
REFERENCES
9.16. Polymer–Membrane Interactions
9.16.1 Polymer–Membrane Interactions
9.16.2 Neutral Polymers
9.16.3 Zwitterionic Polymers
9.16.4 Anionic Polymers
9.16.5 Cationic Polymers
9.16.6 Conclusion
REFERENCES
9.17. Protein–Polymer Conjugates
9.17.1 Introduction
9.17.2 Grafting To
9.17.3 Grafting From
9.17.4 Conclusions and Outlook
REFERENCES
9.18. Biomimetic Polymers (for Biomedical Applications)
9.18.1 Introduction
9.18.2 Interaction of Cells with their Environment: Potential of Biomaterial Design
9.18.3 Biomimetic Strategies Applied for Polymeric Materials
9.18.4 Polymers Used for Biomedical Applications: Biomimetic Modification Techniques
9.18.5 Examples of Biomedical Applications for Biomimetic Polymers
9.18.6 Characterization of Biomimetic Polymer Properties and of the Resulting Interactions with the Biological Environment
9.18.7 Conclusion and Outlook
REFERENCES
9.19. Biocompatibility
9.19.1 Introduction
9.19.2 Biocompatibility
9.19.3 Materials for Medical Devices
9.19.4 In Vitro Tests for Biocompatibility
9.19.5 In Vivo Tests for Biocompatibility
9.19.6 Inflammation, Wound Healing, and the Foreign Body Response
9.19.7 Hemocompatibility
9.19.8 Immune Responses
9.19.9 Summary and Conclusion
REFERENCES
9.20. Hydrogels
9.20.1 Introduction
9.20.2 Gel Swelling and Solute Transport
9.20.3 ‘Intelligent’ Hydrogels
9.20.4 Conclusions
REFERENCES
9.21. Polymeric Implants
9.21.1 Introduction
9.21.2 Properties of Biomedical Polymers
9.21.3 Key Polymers Used in Today’s Medical Devices
9.21.4 Perspectives and Opportunities
REFERENCES
9.22. Photopolymerizable Systems
9.22.1 Introduction
9.22.2 Photopolymerization Reactions
9.22.3 Applications
9.22.4 Conclusion
REFERENCES
9.23. Patterning of Polymeric Materials for Biological Applications
9.23.1 Introduction
9.23.2 Top-Down Polymer Patterning Techniques
9.23.3 Bottom-Up Patterning Techniques
9.23.4 Integration of ‘Top-Down’ and ‘Bottom-Up’ Techniques
9.23.5 Biological Applications of Patterned Polymers
9.23.6 Summary
REFERENCES
9.24. High-Throughput Approaches
9.24.1 Introduction
9.24.2 Polyarylates
9.24.3 Cationic Polymers
9.24.4 Organic Coatings
9.24.5 Polyolefin Catalyst Discovery
9.24.6 Polymers Generated through Radical Polymerization
9.24.7 Ring-Opening Polymerizations
9.24.8 Microarray Approaches
9.24.9 Other High-Throughput Screening Approaches
REFERENCES
9.25. Programming Cells with Synthetic Polymers
9.25.1 Introduction
9.25.2 Extracellular Matrix as a Model for Materials to Program Cells
9.25.3 Recruiting Host Cells
9.25.4 Programming Cells via Adhesive Interactions
9.25.5 Regulating Cell Dispersal
9.25.6 Bringing All Three Steps Together: Regulating Dendritic Cell Recruitment, Activation, and Dispersion
REFERENCES
9.26. Nucleic Acid Delivery via Polymer Vehicles
9.26.1 Introduction
9.26.2 Polymer Vehicles for Nucleic Acid Delivery
9.26.3 Polyplex Characterization
9.26.4 Polymer Structure–Nucleic Acid Delivery Relationships from In Vitro Studies
9.26.5 Introduction to In Vivo Nucleic Acid Delivery with Polymers
9.26.6 Polymer–Nucleic Acid Therapeutics in Human Clinical Trials
REFERENCES
9.27. Polymeric Imaging Agents
9.27.1 Introduction
9.27.2 X-Ray Imaging Contrast Agents
9.27.3 Magnetic Resonance Imaging Contrast Agents
9.27.4 Ultrasound Contrast Agents
9.27.5 Radionucleotide Imaging Agents
9.27.6 Optical Imaging Agents
9.27.7 Conclusions
REFERENCES
9.28. Biodegradation of Polymers
9.28.1 Introduction
9.28.2 Polyesters
9.28.3 Polyanhydrides
9.28.4 Polyorthoesters
9.28.5 Polyketals
REFERENCES
VOLUME 10. Polymers for a Sustainable Environment and Green Energy
10.01. Introduction
10.01.1 Introduction
REFERENCES
10.02. Green Chemistry and Green Polymer Chemistry
10.02.1 Introduction
10.02.2 Green Chemistry
10.02.3 Green Polymer Chemistry
10.02.4 Biopolymer Definitions
REFERENCES
Lipids
10.03. Lipid-Based Polymer Building Blocks and Polymers
10.03.1 Introduction
10.03.2 Natural Fats and Oils as Polymer Building Blocks
10.03.3 Oleochemical Polymer Building Blocks
10.03.4 Glycerol
10.03.5 Summary
REFERENCES
Carbohydrate-Based Polymer Building Blocks & Biopolymers
10.04. Mono-, Di-, and Oligosaccharides as Precursors for Polymer Synthesis
10.04.1 Introduction
10.04.2 Mono-, Di-, and Oligosaccharide-Based Platforms and Building Blocks
10.04.3 Carbohydrate-Based Polymers
10.04.4 Conclusions
REFERENCES
10.05. Celluloses and Polyoses/Hemicelluloses
10.05.1 Introduction
10.05.2 Cellulose Sources and Isolation
10.05.3 Structure and Superstructure of Cellulose: Methods for Analysis
10.05.4 Cellulose Solvents
10.05.5 Cellulose Regeneration
10.05.6 Cellulose Esters
10.05.7 Cellulose Ethers
10.05.8 Deoxy Celluloses
10.05.9 Oxidation of Cellulose
10.05.10 Grafting Reactions
10.05.11 Hemicelluloses
REFERENCES
10.06. Nanochitins and Nanochitosans, Paving the Way to Eco-Friendly and Energy-Saving Exploitation of Marine Resources
10.06.1 Structural Characteristics of Chitins In Vivo
10.06.2 β-Chitin: The Simplest 2D Hydrogen-Bonded Polymorph
10.06.3 α-Chitin: The 3D Hydrogen-Bonded Polymorph
10.06.4 Oxychitin
10.06.5 Simplified Preparation of Chitin Nanofibrils
10.06.6 Electrospinning
10.06.7 Conclusion
REFERENCES
10.07. Starch-Based Biopolymers in Paper, Corrugating, and Other Industrial Applications
10.07.1 Starch Basics
10.07.2 Markets
10.07.3 Starch Modification
10.07.4 Starch Handling and Cooking
10.07.5 Industrial Applications
10.07.6 Pharmaceutical and Chemical Applications
10.07.7 Outlook
REFERENCES
10.08. Guar and Guar Derivatives
10.08.1 Introduction
10.08.2 From the Green Beans to Guar Splits and Guar Powders
10.08.3 Chemical Structure and Resulting Physicochemical Properties and Comparison with Other Polysaccharides
10.08.4 Guar Derivatives
10.08.5 Major Applications of Guars
10.08.6 Conclusions and Outlooks
REFERENCES
10.09. Acacia Gum
10.09.1 Origin
10.09.2 Acacia Gum and Sustainable Environment
10.09.3 Chemical Structure
10.09.4 Applications
10.09.5 Conclusion
REFERENCES
10.10. Alginates
10.10.1 Introduction
10.10.2 Sources and Production
10.10.3 Chemical Composition and Conformation
10.10.4 Properties
10.10.5 Tailoring of Alginates by In Vitro Modification
10.10.6 Technical Applications
10.10.7 Applications of Alginates in Medicine and Biotechnology
10.10.8 Conclusions
REFERENCES
10.11. Xanthan
10.11.1 Introduction
10.11.2 Chemical Structure and Biosynthesis
10.11.3 Production Process and Xanthan Modifications
10.11.4 Physicochemical Properties
10.11.5 Applications
10.11.6 Perspectives
REFERENCES
10.12. Polylactic Acid
10.12.1 Introduction
10.12.2 Nondepleting Properties of PLA
10.12.3 Market Potential of PLA
10.12.4 Process Routes to PLA
10.12.5 Processing of PLA
10.12.6 Properties of PLA
10.12.7 Perspective
10.12.8 LA as Raw Material of PLA
REFERENCES
Amino Acid Based Polymer-Building Blocks and Proteins as Biopolymers
10.13. Gelatin
10.13.1 Gelatin
10.13.2 Chemical Composition
10.13.3 Physical and Chemical Properties
10.13.4 Manufacture and Processing
10.13.5 Economic Aspects
10.13.6 Analytical Test Methods and Quality Standards
10.13.7 Uses
REFERENCES
10.14. Processing Soy Protein Concentrate as Plastic in Polymer Blends
10.14.1 Introduction
10.14.2 Soy Protein Products and Fractionation
10.14.3 Plastic Application of Soy Protein
10.14.4 General Extrusion Compounding for Processing SPC as a Plastic in Blending
10.14.5 Properties of PBAT/SPC Blends
10.14.6 Conclusions
REFERENCES
Lignin
10.15. Lignin as Building Unit for Polymers
10.15.1 Constitution and Structure of Lignin from Renewable Resources
10.15.2 Important Isolation Methods and Their Influence on the Properties of Lignin
10.15.3 Current Applications and Future Aspects of the Utilization of Lignin
10.15.4 Outlook
REFERENCES
Sustainable Use of Biomass
10.16. Natural Fibers
10.16.1 Generalities
10.16.2 Fiber Structure
10.16.3 Fiber Morphology
10.16.4 Fiber Sourcing
10.16.5 Summary of the Proprieties of Natural Fibers
10.16.6 Processing of Natural Fibers
10.16.7 Conclusions
REFERENCES
10.17. Natural Rubber
10.17.1 Introduction and History
10.17.2 Challenge Facing the Supply Chain
10.17.3 The Biosynthesis of Poly(cis-1,4-isoprene)
10.17.4 Nonisoprene Components of Natural Rubber (NR)
10.17.5 NR Structure
10.17.6 NR in the Manufacture of Antivibration Parts
10.17.7 General Aspects of NR Applications in Tires
10.17.8 Conclusion
REFERENCES
10.18. Biocomposites
10.18.1 Introduction
10.18.2 Matrix Systems for NF-Reinforced Composites
10.18.3 Natural Fibers for Composites
10.18.4 Natural Composites and Biocomposites
10.18.5 Manual of Typical Challenges for Selected Applications
10.18.6 Conclusions
10.18.7 Outlook
REFERENCES
Polymer Processing: Environmentally Benign & Safe
10.19. Performance Profile of Biopolymers Compared to Conventional Plastics
10.19.1 Introduction
10.19.2 Property Profiles of the Most Important Biopolymers
10.19.3 Properties in Comparison with Conventional Plastics
REFERENCES
10.20. Processing of Plastics into Structural Components
10.20.1 Introduction
10.20.2 Procedures for Serial Production of Plastics Products
REFERENCES
10.21. Processing and Performance Additives for Plastics
10.21.1 Introduction
10.21.2 Radical Generation
10.21.3 Surface Active Additives
10.21.4 Additives for Polymer Processing
10.21.5 Additives for Polymer Properties and Performance
10.21.6 Stabilization against Polymer Degradation
REFERENCES
10.22. Processing and Performance Additives for Coatings
10.22.1 Introduction
10.22.2 Emulsification, Stabilization, and Dispersion
10.22.3 Foam Control
10.22.4 Rheology, Thickening, and Flow
10.22.5 Coalescence and Film Formation
10.22.6 Preservation
10.22.7 Coating Performance
REFERENCES
Sustainable Manufacturing, Processing and Applications for Polymers and Polymer Systems
10.23. Paper
10.23.1 Introduction
10.23.2 Paper History
10.23.3 Paper Applications and Trends
10.23.4 Paper Manufacturing Basics
10.23.5 Cell Structure of Wood
10.23.6 Lignin and Cellulose Chemistry
10.23.7 Sustainable Forestry
REFERENCES
10.24. Polyurethanes
10.24.1 General Description and Basic Reactions
10.24.2 Foams and Elastomers
10.24.3 Coatings and Adhesives
REFERENCES
10.25. Polysiloxanes
10.25.1 Introduction: Siloxanes and their Environmental Characteristics
10.25.2 How Siloxanes Contribute to Sustainable Manufacturing and Resource Conservation
10.25.3 New Applications with Polysiloxanes as Key Substances for Environmentally Important Processes
10.25.4 Conclusion and Outlook
REFERENCES
10.26. Lubricant and Fuel Additives Based on Polyalkylmethacrylates
10.26.1 Synthesis of Polyalkylmethacrylates
10.26.2 The Chemistry of Polyalkylmethacrylates
10.26.3 Applications of PAMAs
REFERENCES
10.27. Aqueous Emulsion Polymers
10.27.1 Introduction
10.27.2 Emulsion Polymerization and Powder Production
10.27.3 Introduction on Dry Mortars
10.27.4 Function of Dispersible Polymer Powders in Dry Mortars
10.27.5 Environmental Aspects of Using Polymer-Modified Dry Mortars
10.27.6 Applications of Polymer-Modified Dry Mortars
10.27.7 Summary on Polymers in Dry Mortars
10.27.8 Polymer Dispersions in Paper Manufacturing
10.27.9 Polymer Dispersions in Adhesives
10.27.10 Polymer Dispersions in Architectural Coatings
10.27.11 Nonwoven Fabrics
10.27.12 Summary and Outlook
REFERENCES
10.28. Water-Based Epoxy Systems
10.28.1 Introduction
10.28.2 Definition
10.28.3 Classification of Waterborne Epoxy Technologies
10.28.4 Comparison of Waterborne and Solvent-Borne Epoxy Coatings
10.28.5 Waterborne Amine Hardeners: General Structural Requirements
10.28.6 Type I Waterborne Epoxy Technologies
10.28.7 Type II Waterborne Epoxy Technologies
10.28.8 Deep Penetrating and Green Concrete Primer
10.28.9 Water Vapor Permeable Floor Systems
10.28.10 Concrete Coating Systems
10.28.11 Waterborne Epoxy Curing Agent Systems
10.28.12 Self-Leveling Floor Formulation
10.28.13 Self-Leveler
10.28.14 Low-Emission Industrial Floorings
10.28.15 Path to Low-Emission Floorings
10.28.16 Water-Based Low-Emission Formulation
10.28.17 Time Is Money
10.28.18 Conclusions
REFERENCES
10.29. Powder Coatings
10.29.1 Introduction
10.29.2 General Concepts
10.29.3 Material Saving
10.29.4 Raw Materials
10.29.5 Production of Powder Coatings
10.29.6 Application of Powder Coatings
10.29.7 In-Use Considerations
10.29.8 Future Trends
REFERENCES
10.30. Radiation-Curing Polymer Systems
10.30.1 Introduction
10.30.2 Technology
10.30.3 Formulations and Raw Materials
10.30.4 Network Formation and Characterization
10.30.5 Structure–Property Relationship
10.30.6 Applications
10.30.7 Perspectives
REFERENCES
Plastics after Use
10.31. Sustainable Management of Material and Energy Resources
10.31.1 Introduction
10.31.2 Waste Management
10.31.3 Regulatory Framework for Waste Management in Europe
10.31.4 Plastics Waste in Europe
10.31.5 Plastics Waste Recovery
10.31.6 Plastics Waste Recovery and Sustainability
10.31.7 Outlook 2020+
REFERENCES
Polymers in Energy Applications
10.32. Polymers in Energy Applications
10.32.1 Introduction
10.32.2 Chapter Summaries
10.33. Poly(Perfluorosulfonic Acid) Membranes
10.33.1 Introduction
10.33.2 Membrane Manufacturing
10.33.3 Morphology
10.33.4 Durability and Lifetime
10.33.5 New Chemistry
10.33.6 Summary
REFERENCES
10.34. Alternative Hydrocarbon Membranes by Step Growth
10.34.1 Introduction
10.34.2 Alternative Hydrocarbon Ionomer Membranes
10.34.3 Recent Trends in Hydrocarbon Ionomer Membranes
10.34.4 Application to Fuel Cells
10.34.5 Prospects
REFERENCES
10.35. Alternative Proton Exchange Membranes by Chain-Growth Polymerization
10.35.1 Introduction
10.35.2 Chain-Growth Polymerization
10.35.3 Chain-Growth Polymerization Applied to PEM Materials
10.35.4 Conclusions and Future Directions
REFERENCES
10.36. Polymers in Membrane Electrode Assemblies
10.36.1 Introduction
10.36.2 Polymer Electrolyte Membranes
10.36.3 Polymer Electrolyte Ionomers in the Electrode
10.36.4 Summary
REFERENCES
10.37. Morphology of Proton Exchange Membranes
10.37.1 Introduction
10.37.2 Perfluorosulfonate Ionomers as the Benchmark Materials for Proton Exchange Membranes
10.37.3 Alternative Membrane Materials
10.37.4 Evolution of Morphological Models for Nafion®
10.37.5 Morphology–Property Relationships in Ion-Containing Polymers
10.37.6 Development and Manipulation of Morphological Features in Proton Exchange Membranes
10.37.7 Computational Modeling/Simulation of Proton Exchange Membrane Morphology
10.37.8 Conclusions
REFERENCES
10.38. Polymer Electrolyte Membrane Degradation
10.38.1 Introduction
10.38.2 Mechanical Degradation of Polymer Electrolyte Membranes
10.38.3 Chemical Degradation of Polymer Electrolyte Membranes
10.38.4 Summary
REFERENCES
10.39. Molecular and Mesoscale Modeling of Proton Exchange Membranes
10.39.1 Introduction
10.39.2 Simulations of PEMs
10.39.3 Future Directions
REFERENCES
10.40. Polymers for Thin Film Capacitors
10.40.1 Capacitor Fundamentals
10.40.2 Dielectric Polymers
10.40.3 Biaxially Oriented PP Film Capacitors
10.40.4 Ferroelectric Poly(vinylidene fluoride)-Based Film Capacitors
10.40.5 High-Temperature Polymer Capacitors
10.40.6 Polymer Nanocomposite Capacitors
10.40.7 Conclusions
REFERENCES
10.41. Aromatic Poly(amides) for Reverse Osmosis
10.41.1 Introduction
10.41.2 RO Theory
10.41.3 Real-World Design Considerations
10.41.4 RO History
10.41.5 Thin-Film Composites
10.41.6 Polyamide Thin-Film Composites
10.41.7 FT-30 Polymer Analogies
10.41.8 Conclusions
REFERENCES
10.42. Electrolyzer Membranes
10.42.1 Introduction
10.42.2 Development of Polymer Electrolyte Membranes for Electrolysis
10.42.3 Polymer Membranes in the Chlor-Alkali Industry
10.42.4 Polymer Membranes in Gas Generators
10.42.5 Polymer Membranes in Early Regenerative Fuel Cells
10.42.6 Polymer Membrane Performance and Degradation
10.42.7 Performance Fundamentals
10.42.8 Electrolysis and Thermochemical Cycles
10.42.9 Status of Nuclear Power Technology
10.42.10 Review of the Hybrid Sulfur Electrolyzer
10.42.11 Hybrid Sulfur Electrolyzer Performance
10.42.12 Conclusions
REFERENCES
Subject Index
Authors
MM
KM