
Planar Graphs
Theory and Algorithms
- 1st Edition, Volume 32 - April 1, 1988
- Imprint: North Holland
- Authors: T. Nishizeki, N. Chiba
- Language: English
- Paperback ISBN:9 7 8 - 0 - 4 4 4 - 5 5 6 9 3 - 6
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 8 6 7 7 4 - 8
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteCollected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.
Graph Theoretic Foundations. Some Basic Definitions. Planar Graphs. Euler's Formula. Kuratowski's Theorem. Dual Graphs. Bounds for Planar Graphs. Algorithmic Foundations. What is an Algorithm? Machine Model and Complexity. NP-Complete. Data Structure and Graph Representation. Exploring a Graph.Planarity Testing and Embedding. Planarity Testing. Embedding Algorithm.Drawing Planar Graphs. Convex Drawing. Convex Testing. Example.Vertex-Coloring. Proof of Five-Coloring Theorem and 0(n2) Algorithm. Batch Processing Algorithm. Sequential Processing Algorithm. Edge-Coloring. Algorithm COLOR. Algorithm ALCOLOR. Edge-Coloring Multigraphs.Independent Vertex Sets. Approximation Algorithm. Baker's Algorithm.Listing Subgraphs. Arboricity and Efficient Edge-Searching. Listing Triangles. Listing Quadrangles. Listing Maximal Cliques.Planar Separator Theorem. Applications of the Planar Separator Theorem. Maximum Matching. Minimum Vertex Cover.Hamiltonian Cycles. Proof of Tutte's Theorem. Algorithm and 0(n2) Bound. Hamiltonian Walk. Flows in Planar Graphs. Definition of Multicommodity Flows. Planar Single-Commodity Flow. Multicommodity Flows for C1. Multicommodity Flows for Ca.Bibliography. Index.
- Edition: 1
- Volume: 32
- Published: April 1, 1988
- No. of pages (eBook): 231
- Imprint: North Holland
- Language: English
- Paperback ISBN: 9780444556936
- eBook ISBN: 9780080867748
Read Planar Graphs on ScienceDirect