LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Piezoelectric Materials, Composites, and Devices: Fundamentals, Mechanics, and Applications offers practical guidance on piezoelectric materials and composites, as well as their… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Piezoelectric Materials, Composites, and Devices: Fundamentals, Mechanics, and Applications offers practical guidance on piezoelectric materials and composites, as well as their applications on various devices. It starts with a clear overview of piezoelectric fundamentals, key parameters, and standard characterization techniques. The book also details the structure and properties of various piezoelectric materials, including single crystals, ceramics, polymers, 2-dimensional materials, and their composites. It combines numerical simulations with precise measurements for accurate characterization of these materials. The book simplifies complex concepts by presenting basic equations and models, aiding in the understanding of stress and electric fields within piezoelectric devices. The reliability and durability (fracture and fatigue) of piezoelectric materials and composites are also explained, and the final sections of the book explore the applications of piezoelectric materials on sensors, energy harvesters, and actuators, highlighting the capabilities of advanced piezoelectric materials.
Academic researchers and grad students in mechanics, materials science, engineering, and physics, Professionals in these same areas
1. Fundamentals of Piezoelectricity
2. Piezoelectric Materials
3. Piezoelectric Composite Design
4. Piezoelectric Multiscale Numerical Simulation
5. Reliability and Durability of Piezoelectric Materials
6. Recent Advances of Piezoelectric Devices
FN
Fumio Narita is a Professor in the Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Japan. His current research focuses on the design and development of piezoelectric/magnetostrictive materials and structures in energy harvesting and self-powered environmental monitoring. He is extensively using state-of-the-art electromagneto-mechanical characterization techniques in combination with computational multiscale modeling to understand the fundamental structure–property relations of complex multifunctional composite materials.
ZW
Zhenjin Wang is an Assistant Professor in the Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Japan. She has also been granted the title of Prominent Research Fellow at Tohoku University. Her research focuses on developing innovative piezoelectric composites and multifunctional carbon fiber reinforced polymer (CFRP) composites. These materials are tailored for applications in energy harvesting, sensors, structural health monitoring, haptic devices, and Internet of Things (IoT) technologies.