Physical Principles and Techniques of Protein Chemistry, Part A deals with the principles and application of selected physical methods in protein chemistry evaluation. This book is organized into nine chapters that cover microscopic, crystallographic, and electrophoretic techniques for protein conformational perturbations evaluation. This text first presents a general account of electron microscopy, its specimen preparation, optimum conditions for high resolution, measurement of electron micrographs, and illustrative examples of protein study. This book then examines the different types of maps from X-ray methods and the diffraction data from fibrous proteins. The subsequent chapters cover discussions on UV spectroscopy of proteins; luminescence properties of proteins and related compounds; and perturbation and flow methods for evaluation of proteins’ dynamic properties and rate constants. Other chapters deal with the evaluation of proteins’ dielectric properties using dielectric relaxation, electric birefringence, and dichroism techniques. The concluding chapters outline the theoretical and experimental advances of the electrophoretic and gel filtration methods for the study of protein structure and molecular weight. This book is of great value to chemists, biologists, and researchers who have great appreciation of protein chemistry.