Skip to main content

Nonmeasurable Sets and Functions

  • 1st Edition, Volume 195 - May 29, 2004
  • Author: Alexander Kharazishvili
  • Language: English
  • Hardback ISBN:
    9 7 8 - 0 - 4 4 4 - 5 1 6 2 6 - 8
  • Paperback ISBN:
    9 7 8 - 0 - 4 4 4 - 5 4 5 6 4 - 0
  • eBook ISBN:
    9 7 8 - 0 - 0 8 - 0 4 7 9 7 6 - 7

The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the… Read more

Nonmeasurable Sets and Functions

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code needed.

Image of books

Institutional subscription on ScienceDirect

Request a sales quote
The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics:1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces;2. The theory of non-real-valued-measurable cardinals;3. The theory of invariant (quasi-invariant)extensions of invariant (quasi-invariant) measures.These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions.