Back to School Savings: Save up to 30% on print books and eBooks. No promo code needed.
Back to School Savings: Save up to 30%
Neural Networks in Bioprocessing and Chemical Engineering
1st Edition - May 31, 1994
Authors: D. R. Baughman, Y. A. Liu
eBook ISBN:9781483295657
9 7 8 - 1 - 4 8 3 2 - 9 5 6 5 - 7
Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward… Read more
Purchase Options
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.
Each chapter contains an introduction, chapter summary, references to further reading, practice problems, and a section on nomenclature Includes a PC-compatible disk containing input data files for examples, case studies, and practice problems Presents 10 detailed case studies Contains an extensive glossary, explaining terminology used in neural network applications in science and engineering Provides examples, problems, and ten detailed case studies of neural computing applications, including: Process fault-diagnosis of a chemical reactor Leonard–Kramer fault-classification problem Process fault-diagnosis for an unsteady-state continuous stirred-tank reactor system Classification of protein secondary-structure categories Quantitative prediction and regression analysis of complex chemical kinetics Software-based sensors for quantitative predictions of product compositions from flourescent spectra in bioprocessing Quality control and optimization of an autoclave curing process for manufacturing composite materials Predictive modeling of an experimental batch fermentation process Supervisory control of the Tennessee Eastman plantwide control problem Predictive modeling and optimal design of extractive bioseparation in aqueous two-phase systems
Chemical engineers, biotechnologists, and computer scientists working with or interested in applying neural networks, and senior-level undergraduate and graduate students in these areas.
Introduction to Neural Networks: Introduction. Properties of Neural Networks. Potential Applications of Neural Networks. Reported Commercial and Emerging Applications. Fundamental and Practical Aspects of Neural Computing: Introduction to Neural Computing. Fundamentals of Backpropagation Learning. Practical Aspects of Neural Computing. Standard Format for Presenting Training Data Files and Neural Network Specifications. Introduction to Special Neural Network Architectures. Appendices. Classification: Fault Diagnosis and Feature Categorization: Overview of Classification Neural Networks. Radial-Basis-Function Networks. Comparison of Classification Neural Networks. Classification Neural Networks for Fault Diagnosis. Classification Neural Networks for Feature Categorization. Prediction and Optimization: Case Study 1: Neural Networks and Nonlinear Regression Analysis. Case Study 2: Neural Networks as Soft Sensors for Bioprocessing. Illustrative Case Study: Neural Networks for Process Quality Control and Optimization. Process Forecasting, Modeling, and Control of Time-Dependent Systems: Data Compression and Filtering. Recurrent Networks for Process Forecasting. Illustrative Case Study: Development of aTime-Dependent Network for Predictive Modeling of a Batch Fermentation Process. Illustrative Case Study: Tennessee Eastman Plantwide Control Problem. Neural Networks for Process Control. Development of Expert Networks: A Hybrid System of Expert Systemsand Neural Networks: Introduction to Expert Networks. Illustrative Case Study: Bioseparation of Proteins in Aqueous Two-Phase Systems. Appendix. Glossary. Data Files. Subject Index.
No. of pages: 488
Language: English
Published: May 31, 1994
Imprint: Academic Press
eBook ISBN: 9781483295657
DB
D. R. Baughman
Affiliations and expertise
Virginia Polytechnic Institute and State University
YL
Y. A. Liu
Affiliations and expertise
Virginia Polytechnic Institute and State University