LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for ta… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+.
Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications.
Graduate biomaterials researchers and biomedical engineers with some medical device designers.
SK
CL
Dr. Laurencin is the Van Dusen Distinguished Endowed Professor of Orthopaedic Surgery, and Professor of Chemical, Materials, and Biomedical Engineering at the University of Connecticut. In addition, Dr. Laurencin is a University Professor at the University of Connecticut (the 7th in the institution’s history). He is the Director of both the Institute for Regenerative Engineering, and the Raymond and Beverly Sackler Center at the University of Connecticut Health Center. Dr. Laurencin serves as the Chief Executive Officer of the Connecticut Institute for Clinical and Translational Science at UCONN.
Dr. Laurencin earned his undergraduate degree in Chemical Engineering from Princeton, his medical degree, Magna Cum Laude, from Harvard Medical School, and his Ph.D. in Biochemical Engineering/Biotechnology from M.I.T.
A board certified orthopaedic surgeon and shoulder/ knee specialist, he won the Nicolas Andry Award from the Association of Bone and Joint Surgeons. His discoveries in research have been highlighted by Scientific American Magazine, and more recently by National Geographic Magazine in its “100 Scientific Discoveries that Changed the World” edition.
Dr. Laurencin is an outstanding mentor and he has received the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring in ceremonies at the White House. Dr. Laurencin has received the Elizabeth Hurlock Beckman Award for mentoring, and the American Association for the Advancement of Science’s Mentor Award.
Dr. Laurencin previously served as the UConn Health Center’s Vice President for Health Affairs and Dean of the School of Medicine. Prior to that, Dr. Laurencin was the Lillian T. Pratt Distinguished Professor and Chair of the Department of Orthopaedic Surgery at the University of Virginia, and Orthopaedic Surgeon-in-Chief for the University of Virginia Health System.
Dr. Laurencin is an elected member of the Institute of Medicine of the National Academy of Sciences, and an elected member of the National Academy of Engineering. He is also an elected member of the National Academy of Inventors.
MD