LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Nanometal Oxides in Horticulture and Agronomy, a volume in the Nanomaterial-Plant Interactions series, summarizes the physiological, morphological, biochemical, and molecular re… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Nanometal Oxides in Horticulture and Agronomy, a volume in the Nanomaterial-Plant Interactions series, summarizes the physiological, morphological, biochemical, and molecular regulation of metal oxide nanoparticles in plants under normal conditions as well as during different stresses. With a focus on impact and applications, it presents the latest advances in the roles of metal oxide nanoparticles in both horticulture and agriculture.
Metal oxide nanoparticles have been reported as beneficial inorganic materials for the growth and development of plants, playing a protective role against the abiotic and biotic stresses. Researchers need to understand the different regulatory pathways of metal oxide nanoparticles, including their mechanisms of operation under different stressful conditions. This volume presents the physiological, morphological, biochemical, and molecular regulation of metal oxide nanoparticles in plants in normal conditions as well as during different stresses. It also discusses tolerance mechanisms and the variety of roles and applications that metal oxide nanoparticles have within plant biology.
Beginning with an introductory overview to metal oxide nanomaterials, chapters discuss the effect of metal oxide nanomaterials on biochemical pathways within the plant, highlighting key applications such as fertilizers, weed control systems and pest control systems. It describes the impact of metal oxide nanoparticles in different challenging environmental conditions. Concluding with a discussion of the strengths and weaknesses of metal oxide nanoparticles in agriculture, Nanometal Oxides in Horticulture and Agronomy provides inspiration for further research and advancement. This book is an essential read for researchers and students interested in horticulture, agronomy, and plant nanomaterials.
1. Metal oxide nanomaterials: An introductory overview
2. Why metal oxide nanoparticles are superior to other nanomaterials for agricultural applications
3. Effect of metal oxide nanomaterials on biochemical pathways in plants
4. Nano metal oxide as fertilizer for crop improvement
5. Nano metal oxide-based delivery system for weed control
6. Nano metal oxide-based delivery system for pest and insect control
7. Impact of metal oxide nanomaterials on seed germination, plants growth and development
8. Role of metal oxide nanoparticles against biotic stress in plants
9. Impact of metal oxide nanomaterials against salinity stress in plants
10. Impact of metal oxide nanomaterials against drought stress in plants
11. Impact of metal oxide nanomaterials against heavy metal stress in plants
12. Role of metal oxide nanoparticles in the plant/rhizo microbiome
13. "Metal oxide nanoparticle" vs. "released ions": in soil and Plants
14. Toxicity in plants by metal oxide nanomaterials
15. Role of metal oxide nanomaterials in preservation of harvested crops
16. Management of soil nutrient deficiency by nano metal oxides
17. Nano metal oxide as nanosensor in agriculture and environment
18. Strengths and weaknesses of metal oxide nanoparticles in agriculture
LX
RP
RM
SD