Molecular Players in iPSC Technology
- 1st Edition - August 29, 2021
- Editor: Alexander Birbrair
- Language: English
- Paperback ISBN:9 7 8 - 0 - 3 2 3 - 9 0 0 5 9 - 1
- eBook ISBN:9 7 8 - 0 - 3 2 3 - 9 0 0 6 0 - 7
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biolog… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteThe series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology.
Molecular Players in iPSC Technology, Volume 12 addresses the molecular players underlying induced pluripotent stem cell (iPSC) generation, maintenance, expansion, and differentiation.
The discovery of iPSCs revolutionized biomedical research. iPSC technology involves multiple molecular mechanisms. This volume covers exosomal microRNAs, auxiliary pluripotency-associated genes, inducible caspase-9 suicide gene, cell cycle proteins, ion channels, Notch signaling, kinase signaling, SOCS3/JAK2/STAT3 pathway, NANOG, Krüppel-like factors, H1FOO, and much more in iPSCs.
The volume is written for researchers and scientists in stem cell therapy, cellular and molecular biology, and regenerative medicine and is contributed by world-renowned authors in the field.
Molecular Players in iPSC Technology, Volume 12 addresses the molecular players underlying induced pluripotent stem cell (iPSC) generation, maintenance, expansion, and differentiation.
The discovery of iPSCs revolutionized biomedical research. iPSC technology involves multiple molecular mechanisms. This volume covers exosomal microRNAs, auxiliary pluripotency-associated genes, inducible caspase-9 suicide gene, cell cycle proteins, ion channels, Notch signaling, kinase signaling, SOCS3/JAK2/STAT3 pathway, NANOG, Krüppel-like factors, H1FOO, and much more in iPSCs.
The volume is written for researchers and scientists in stem cell therapy, cellular and molecular biology, and regenerative medicine and is contributed by world-renowned authors in the field.
- Provides overview of the fast-moving field of iPSC technology, regenerative medicine, and therapeutics
- Covers the different key molecular players involved in iPSC formation, maintenance, expansion, and differentiation
- Is contributed by world-renowned experts in the field
Researchers and scientists in stem cell therapy, cell biology, regenerative medicine, and organ transplantation. Graduate and undergraduate students in the above fields
1. Engineering Exosomal MicroRNAs in Human Pluripotent Stem Cells
2. Auxiliary Pluripotency-Associated Genes and Their Contributions in the Generation of Induced Pluripotent Stem Cells
3. Improving the Safety of iPSC-derived T Cell Therapy
4. Induced Pluripotency and Intrinsic Reprogramming Factors: Adult Stem Cells Versus Somatic Cells
5. Role of Ion Channels in Human Induced Pluripotent Stem Cells Derived Cardiomyocytes
6. Notch Signaling in Induced Pluripotent Stem Cells
7. The Role of Cell Cycle in Reprogramming Towards Induced Pluripotent Stem Cells (iPSCs)
8. The Extracellular Signal-Regulated Kinase Signaling Pathway in Biology of Pluripotent Stem Cells
9. SOCS3/JAK2/STAT3 Pathway in iPSCs
10. Nanog in iPS Cells and During Reprogramming
11. The Role of Krüppel-like Factors in Generating Induced Pluripotent Stem Cells
12. The Oocyte-Specific Linker Histone H1FOO Plays A Key Role in Establishing High-Quality Mouse Induced Pluripotent Stem Cells
2. Auxiliary Pluripotency-Associated Genes and Their Contributions in the Generation of Induced Pluripotent Stem Cells
3. Improving the Safety of iPSC-derived T Cell Therapy
4. Induced Pluripotency and Intrinsic Reprogramming Factors: Adult Stem Cells Versus Somatic Cells
5. Role of Ion Channels in Human Induced Pluripotent Stem Cells Derived Cardiomyocytes
6. Notch Signaling in Induced Pluripotent Stem Cells
7. The Role of Cell Cycle in Reprogramming Towards Induced Pluripotent Stem Cells (iPSCs)
8. The Extracellular Signal-Regulated Kinase Signaling Pathway in Biology of Pluripotent Stem Cells
9. SOCS3/JAK2/STAT3 Pathway in iPSCs
10. Nanog in iPS Cells and During Reprogramming
11. The Role of Krüppel-like Factors in Generating Induced Pluripotent Stem Cells
12. The Oocyte-Specific Linker Histone H1FOO Plays A Key Role in Establishing High-Quality Mouse Induced Pluripotent Stem Cells
- No. of pages: 436
- Language: English
- Edition: 1
- Published: August 29, 2021
- Imprint: Academic Press
- Paperback ISBN: 9780323900591
- eBook ISBN: 9780323900607
AB
Alexander Birbrair
Dr. Alexander Birbrair received his bachelor’s biomedical degree from Santa Cruz State University in Brazil. He completed his PhD in Neuroscience, in the field of stem cell biology, at the Wake Forest School of Medicine under the mentorship of Osvaldo Delbono. Then, he joined as a postdoc in stem cell biology at Paul Frenette’s laboratory at Albert Einstein School of Medicine in New York. In 2016, he was appointed faculty at Federal University of Minas Gerais in Brazil, where he started his own lab. His laboratory is interested in understanding how the cellular components of different tissues function and control disease progression. His group explores the roles of specific cell populations in the tissue microenvironment by using state-of-the-art techniques. His research is funded by the Serrapilheira Institute, CNPq, CAPES, and FAPEMIG. In 2018, Alexander was elected affiliate member of the Brazilian Academy of Sciences (ABC), and, in 2019, he was elected member of the Global Young Academy (GYA), and in 2021, he was elected affiliate member of The World Academy of Sciences (TWAS). He is the Founding Editor and Editor-in-Chief of Current Tissue Microenvironment Reports, and Associate Editor of Molecular Biotechnology. Alexander also serves in the editorial board of several other international journals: Stem Cell Reviews and Reports, Stem Cell Research, Stem Cells and Development, and Histology and Histopathology.
Affiliations and expertise
Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Department of Radiology, Columbia University Medical Center, Medical Center, USARead Molecular Players in iPSC Technology on ScienceDirect