Limited Offer
Modern Practice in Servo Design
International Series of Monographs in Electrical Engineering
- 1st Edition - October 22, 2013
- Editor: D. R. Wilson
- Language: English
- Paperback ISBN:9 7 8 - 1 - 4 8 3 1 - 1 3 0 5 - 0
- eBook ISBN:9 7 8 - 1 - 4 8 3 1 - 4 5 4 7 - 1
International Series of Monographs in Electrical Engineering, Volume 2: Modern Practice in Servo Design focuses on servomechanics and feedback control systems. The selection first… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteInternational Series of Monographs in Electrical Engineering, Volume 2: Modern Practice in Servo Design focuses on servomechanics and feedback control systems. The selection first takes a look at basic servomechanism theory, including block diagrams, servo components and compensation, power amplification, absolute stability, transfer functions, and frequency response design methods. The book then discusses the design of a large servomechanism and development of the servo design, as well as digital servo techniques, effects of disturbances, performance specification, mechanical resonance, and completed control loop and its stability. The text describes the design of large antennas for radio telescope and satellite trackers. Topics include servo system performance, tracking accuracy requirements, closed loop performance, and dynamic performance. The book also takes a look at the application of analog computers to the design of a servomechanism and the use of hybrid computers in servo design. The selection is a valuable source of information for readers interested in servomechanics and feedback control systems.
Contents
Preface
Authors
Chapter 1. Basic Servomechanism Theory
1.1. Introduction
1.2. The Laplace Transform and Complex Frequencies
1.3. Transfer Functions
1.4. The Complex Frequency Plane
1.5. Block Diagrams
1.6. Closed Loop Transfer Functions
1.7. Absolute Stability
1.8. Frequency Response Design Methods
1.8.1. NyquistPlot
1.8.2. Bode Plot
1.8.3. Nichols Charts
1.8.4. The Root Locus Method
1.8.5. Servo Design Using the Root Locus Method
1.8.6. Routh's Stability Criterion
1.9. Servo Components
1.9.1. Error Detectors
1.9.2. Potentiometer Detectors
1.9.3. Synchro Error Detectors
1.9.4. Block Diagram of the Error Detector
1.10. Servo Compensation
1.11. Power Amplification
1.12. The d.c. Servo Motor
1.13. Gearing and Mechanical Load Resonance
1.14. Conclusion
References
Chapter 2. Preliminary Design of a Large Servomechanism
2.1. Introduction
2.2. Performance Specification
2.3. Steady State and Transient Performance
2.3.1. Servomechanism Errors
2.3.2. Steady-state Error Coefficients
2.4. Selection of Motor and Gear Ratio
2.4.1. d.c. Servo Motors
2.4.2. Gear Ratio Selection
2.4.3. Motor Rating
2.5. Effects of Disturbances
2.5.1. Evaluation of Errors from Spectral Density Functions
2.6. Example: Ward-Leonard Speed Regulator
2.6.1. Series Compensation
2.6.2. Feedback Compensation
References
Chapter 3. Development of the Servo Design
3.1. Introduction
3.2. Mechanics
3.3. The Motors
3.4. The Power Stage
3.4.1. General Requirements
3.4.2. The Rotary Power Drive
3.5. The Exciter and Servo Amplifiers
3.6. The Completed Control Loop and Its Stability
3.7. Saturation Levels and Designed Non-linearities
3.7.1. Effects of Saturation on Stability
3.7.2. The Error Channels
3.7.3. Saturation Levels
3.7.4. Coarse Braking
3.8. Mechanical Resonance
3.8.1. Resonance Inside the Feedback Loop
3.8.2. Resonance
3.8.3. Anti-resonance
3.8.4. Locked Rotor Resonant Frequency
3.8.5. The Anti-resonant Rotor Frequency
3.8.6. The Free Rotor and Load Resonance
3.8.7. Resonance Outside the Servo Loop
3.8.8. Cascaded Resonances and Compensation
3.8.9. Example
3.9. Additional Factors
3.10. Summary
3.11. Appendix
References
Chapter 4. Digital Servo Techniques
4.1. Introduction
4.2. Speed Control
4.3. Digital Codes
4.3.1. Binary Code
4.3.2. BCD Code
4.3.3. Gray Code
4.4. Digital Circuitry
4.4.1. Logic Functions
4.4.2. Boolean Algebra
4.4.3. Bi-stable Memory Unit
4.4.4. Binary Counters
4.4.5. 8421 BCD Counter
4.4.6. 2421 BCD Counter
4.4.7. Bi-directional Counters
4.4.8. Digital Subtractors
4.5. Digital Encoders
4.5.1. Brush Contact Encodes
4.5.2. Optical Encoders
4.5.3. Magnetic Encoders
4.5.4. Inductive Encoders
4.5.5. Capacitive Encoders
4.5.6. Encoder Ambiguity
4.6. Digital to Analog Convertors
4.7. Stepper Motors
4.8. Digital Position Control of a Large Antenna
4.9. Conclusions
References
Chapter 5. Design of Large Antennae for Radio Telescope and Satellite Trackers
5.1. Introduction
5.2. Servo System Performance
5.2.1. Radio Telescopes
5.2.2. Satellite Trackers
5.3. Servo Control Input Equipment
5.3.1. Radio Telescopes
5.3.2. Other Methods of Polar Coordinate to Alt./Az. Coordinate Conversion
5.3.3. Input Equipment for Satellite Trackers
5.4. Choice of Servo Configuration
5.4.1. Basic Servo Design Philosophy
5.5. Dynamic Performance
5.5.1. Zenith Angle Velocity
5.5.2. Azimuth Velocity
5.5.3. Accelerations
5.6. Tracking Accuracy Requirements
5.6.1. Error Distribution
5.6.2. Acceleration Error
5.6.3. Error Due to Tracking Receiver Noise
5.6.4. Tracking Null Shift Error
5.6.5. Wind Gusts: Mechanical Deflections
5.6.6. Servo Bandwidth
5.6.7. Aerial Inertia
5.6.8. Motor Rating
5.6.9. Mechanical Natural Frequency
5.7. Closed Loop Performance
5.7.1. Wind Gusts: Servo Errors
5.7.2. Running into Alignment
5.8. Commissioning and Testing
5.8.1. Maximum Acceleration and Velocity Checks
5.8.2. Response Tests
5.9. Conclusion
References
Chapter 6. The Practical Control System
6.1. Introduction
6.2. Practical Servos
6.2.1. Interference
6.2.2. Environment
6.2.3. User Requirements
6.2.4.Saturations
6.2.5. Backlash
6.2.6. Friction
6.3. On-site Adjustments
6.3.1. Zero Alignment
6.3.2. Servo Adjustments
6.3.3. Performance
6.3.4. Optimization
6.4. Measuring Devices and Error Detection
6.4.1. Potentiometers
6.4.2. Synchros
6.4.3. Inductosyn
6.4.4. Optical Measuring Device
6.4.5. Digital Error Detectors
6.4.6. Mechanical Shaft Encoder
6.4.7. Optical Encoders
6.4.8. Magnetic Encoder
6.5. Programming the Input Command to a Servomechanism
6.5.1. Analog Inputs
6.5.2. Digital Inputs
6.5.3. Digital/Analog Convertors
6.5.4. On-line programming
6.5.5. Satellite-tracking aerial
References
Chapter 7. Application of the Analog Computer to the Design of a Servomechanism
7.1. Introduction
7.2. Definition of Analog Computer Functions
7.2.1. High Gain d.c. Amplifier
7.2.2. Virtual Earth Concept
7.2.3. Integration
7.2.4. Differentiation
7.2.5. Addition
7.2.6. Application of the Potentiometer
7.2.7. Summary of the Basic Analog Computer Operations
7.2.8. Read-out Facilities
7.2.9. Programming a Simple Example
7.3. Preparation of the Problem for the Computer
7.3.1. Problem Description
7.3.2. Problem Definition
7.3.3. Scaling Factors
7.3.4. Preparing the Computer Diagrams
7.3.5. Static Check Procedure
7.4. Simulation of a Position Servomechanism
7.4.1. System Equations
7.4.2. Scaled Equations
7.4.3. Time Scaling
7.4.4. Problem Check Procedure
7.5. Design of a Compensating Network
7.5.1. Simulation of the Compensating Network
7.6. Non-linear Analog Methods
7.6.1. Introduction
7.6.2. Synthesis of Non-linearities
7.6.3. Limiter
7.6.4. Coulomb Friction
7.6.5. Dead Zone
7.6.6. Hard Limiter
7.6.7. Half-wave Rectifier
7.6.8. Hysteresis
7.7.Non-linear Computer Faculties
7.7.1. Arbitrary Function Generators
7.7.2. Generation of Functions of Two Variables
7.7.3. Particular Function Generators
7.7.4. Multipliers
7.7.5. Division
7.7.6. Relay Comparators
References and Bibliography
Chapter 8. Hybrid Computers in Servo Design
8.1. Introduction
8.2. The Parallel Hybrid Computer
8.2.1. Parallel Hybrid Computer Elements
8.2.2. Analog Section Elements
8.2.3. Logic Section Elements
8.2.4. Linkage Elements
8.3. Applications of the Parallel Hybrid Computer
8.3.1. Computing the Transient Response of a System for Increasing Values of Disturbance, e.g. Increasing Values of Step Input
8.3.2. Computing Transient Responses for Increasing Values of Initial Conditions
8.3.3. Computing Transient Responses for Increasing Values of Parameters
8.3.4. Boundary Value Problems
8.3.5. Simulation of Systems which Contain Decision-making Elements
8.4. Optimization of a Position Servomechanism
8.4.1. Method of Solution
8.4.2. Solution on a Parallel Hybrid Computer
References and Bibliography
Chapter 9. Servo Amplifier Design
9.1. Introduction
9.2. Amplifiers for Large Position Servos
9.2.1. d.c. Transistor Amplifiers
9.3. Low Power a.c. Servo Amplifiers
9.4. Low Power d.c. Servo Amplifiers
9.5. Power Output Stages
9.6. Low Level Amplifiers
9.7. Modern Techniques and Construction
9.7.1. Silicon Integrated Circuits
9.7.2. Thin Film Circuits
9.7.3. Thick Film Circuits
9.7.4. Micro-welding Techniques
9.7.5. Potting and Encapsulation
9.7.6. Multi-layer Printed Circuit Boards and Plated-through Techniques
9.7.7. Semiconductor Cooling Devices and Vapour-phase Cooling Systems
9.8. Summary and Future Trends
9.9 Examples
References
Chapter 10. Thyristor Applications
10.1. Introduction
10.2. Thyristors, Firing Circuits and Ratings
10.2.1. Construction and Operation of the Thyristor
10.2.2. Trigger Requirements
10.2.3. A Typical Firing Circuit with Phase Control
10.2.4. Thyristor Ratings
10.3. Thyristor Power Amplifiers
10.4. Design of a Thyristor Power Amplifier for a 50 h.p. d.c. Motor Velocity Servo
10.4.1. System Specification
10.4.2. Selection of Amplifier Configuration
10.4.3. Voltage Rating of Thyristors and Protection
10.4.4. Thyristor Current Ratings and Protection
10.4.5. Amplifier Design Fuse Protection Calculations
10.4.6. Steady-state System Design
10.4.7. Regenerative Braking and Reversing
10.4.8. Ripple Instability
10.5. Variable Speed a.c. Motor Drives
10.5.1. Variable Frequency Control
10.5.2. Variable Voltage Control
10.5.3. Modified Kramer Drive
References
Chapter 11. Reliability
11.1. Introduction
11.2. The Fundamentals of Reliability Theory
11.2.1. The Exponential Reliability Model
11.3. Component and Equipment Testing Using Different Approaches
11.3.1. The Established Reliability Approach
11.3.2. AGREE Testing
11.3.3. The "Testing Extra" Approach to Equipment Reliability
11.4. The Designer's Approach to Equipment Reliability
11.4.1. Reliability Through Derating
11.4.2. Derating of Semiconductors
11.4.3. Derating of Capacitors
11.4.4. Derating of Resistors
11.5. The Achievement of Reliability Through Equipment Construction
11.5.1. Equipment Sealing
11.5.2. The Use of Plated-through Printed Circuit Boards
11.5.3. Printed Circuit Connectors to Interconnect Boards
11.5.4. Wire-wrapped Joints
11.5.5. Encapsulation of Components or Modules
11.5.6. Exotherm
11.5.7. Shrinkage Stress
11.5.8. The Use of Fillers
11.5.9. Ingress of Moisture
11.6. Equipment Reliability Through Component Selection and Examples
11.7. Equipment Reliability Through Redundancy Techniques
11.8. Reliability Through the Use of Micro-electronics Techniques
11.9. Summary of the Approach to Equipment Design
References
Appendix
Index
Other Titles in the Series
- No. of pages: 332
- Language: English
- Edition: 1
- Published: October 22, 2013
- Imprint: Pergamon
- Paperback ISBN: 9781483113050
- eBook ISBN: 9781483145471