Book sale: Save up to 25% on print and eBooks. No promo code needed.
Book sale: Save up to 25% on print and eBooks.
Mechanics of Transformation Toughening and Related Topics
1st Edition - May 1, 1996
Authors: J.H. Andreasen, B.L. Karihaloo
eBook ISBN:9780080536040
9 7 8 - 0 - 0 8 - 0 5 3 6 0 4 - 0
Since the benefit of stress-induced tetragonal to monoclinic phase transformation of confined tetragonal zirconia particles was first recognized in 1975, the phenomenon has been… Read more
Purchase Options
LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
Since the benefit of stress-induced tetragonal to monoclinic phase transformation of confined tetragonal zirconia particles was first recognized in 1975, the phenomenon has been widely studied and exploited in the development of a new class of materials known as transformation toughened ceramics (TTC). In all materials belonging to this class, the microstructure is so controlled that the tetragonal to monoclinic transformation is induced as a result of a high applied stress field rather than as a result of cooling the material below the martensitic start temperature.
The significance of microstructure to the enhancement of thermomechanical properties of TTC is now well understood, as are the mechanisms that contribute beneficially to their fracture toughness. The micromechanics of these mechanisms have been extensively studied and are therefore presented here in a cogent manner.
The authors also review dislocation formalism for the modelling of cracks and Eshelby's technique. In compiling this monograph the authors present the most up-to-date and complete review of the field and include several topics which have only recently been fully investigated.
Preface. I. Introduction and Theory. 1. Introduction. 2. Transformation toughening materials. 3. Constitutive modelling. 4. Elastic solutions for isolated transformable spots. 5. Interaction between cracks and isolated transformable particles. 6. Modelling of cracks by dislocations. II. Transformation toughening. 7. Steady-state toughening due to dilatation. 8. R-curve analysis. 9. Three-dimensional transformation toughening. 10. Transformation zones from discrete particles. III. Related Topics. 11. Toughening in DZC. 12. Toughening in DZC by crack trapping. 13. Toughening in DZC by crack deflection. 14. Fatigue crack growth in transformation toughening ceramics. 15. Wear in ZTC. Bibliography. Author index. Subject index.
No. of pages: 523
Language: English
Published: May 1, 1996
Imprint: North Holland
eBook ISBN: 9780080536040
JA
J.H. Andreasen
Affiliations and expertise
Aalborg University, Aalborg, Denmark
BK
B.L. Karihaloo
Affiliations and expertise
Institute of Mechanical Engineering, Aalborg University, Denmark