Skip to main content

Save up to 20% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 20% on print and eBooks.

Measure, Integration, and Functional Analysis

1st Edition - January 1, 1972

Author: Robert B. Ash

Language: English
eBook ISBN:
9 7 8 - 1 - 4 8 3 2 - 6 5 1 0 - 0

Measure, Integration, and Functional Analysis deals with the mathematical concepts of measure, integration, and functional analysis. The fundamentals of measure and integration… Read more

Measure, Integration, and Functional Analysis

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote
Measure, Integration, and Functional Analysis deals with the mathematical concepts of measure, integration, and functional analysis. The fundamentals of measure and integration theory are discussed, along with the interplay between measure theory and topology. Comprised of four chapters, this book begins with an overview of the basic concepts of the theory of measure and integration as a prelude to the study of probability, harmonic analysis, linear space theory, and other areas of mathematics. The reader is then introduced to a variety of applications of the basic integration theory developed in the previous chapter, with particular reference to the Radon-Nikodym theorem. The third chapter is devoted to functional analysis, with emphasis on various structures that can be defined on vector spaces. The final chapter considers the connection between measure theory and topology and looks at a result that is a companion to the monotone class theorem, together with the Daniell integral and measures on topological spaces. The book concludes with an assessment of measures on uncountably infinite product spaces and the weak convergence of measures. This book is intended for mathematics majors, most likely seniors or beginning graduate students, and students of engineering and physics who use measure theory or functional analysis in their work.