
Materials Kinetics
Transport and Rate Phenomena
- 1st Edition - November 22, 2020
- Author: John C. Mauro
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 2 3 9 0 7 - 0
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 2 4 2 1 6 - 2
Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The b… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteMaterials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick’s laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials.
Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations.
- Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches
- Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials
- Provides a seamless connection between thermodynamics and kinetics
- Includes practical exercises that reinforce key concepts at the end of each chapter
Postdoctoral researchers; graduate students; upper-level undergraduate students; professionals working in industries related to diffusion, conductivity, viscosity including all materials companies that have R&D branches; students and academics in chemistry and physics
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Foreword
- Preface
- Acknowledgments
- Chapter 1. Thermodynamics vs. Kinetics
- 1.1. What is Equilibrium?
- 1.2. Thermodynamics vs. Kinetics
- 1.3. Spontaneous and Non-Spontaneous Processes
- 1.4. Microscopic Basis of Entropy
- 1.5. First Law of Thermodynamics
- 1.6. Second Law of Thermodynamics
- 1.7. Third Law of Thermodynamics
- 1.8. Zeroth Law of Thermodynamics
- 1.9. Summary
- Exercises
- Chapter 2. Irreversible Thermodynamics
- 2.1. Reversible and Irreversible Processes
- 2.2. Affinity
- 2.3. Fluxes
- 2.4. Entropy Production
- 2.5. Purely Resistive Systems
- 2.6. Linear Systems
- 2.7. Onsager Reciprosity Theorem
- 2.8. Thermophoresis
- 2.9. Thermoelectric Materials
- 2.10. Electromigration
- 2.11. Piezoelectric Materials
- 2.12. Summary
- Exercises
- Chapter 3. Fick's Laws of Diffusion
- 3.1. Fick's First Law
- 3.2. Fick's Second Law
- 3.3. Driving Forces for Diffusion
- 3.4. Temperature Dependence of Diffusion
- 3.5. Interdiffusion
- 3.6. Measuring Concentration Profiles
- 3.7. Tracer Diffusion
- 3.8. Summary
- Exercises
- Chapter 4. Analytical Solutions of the Diffusion Equation
- 4.1. Fick's Second Law with Constant Diffusivity
- 4.2. Plane Source in One Dimension
- 4.3. Method of Reflection and Superposition
- 4.4. Solution for an Extended Source
- 4.5. Bounded Initial Distribution
- 4.6. Method of Separation of Variables
- 4.7. Method of Laplace Transforms
- 4.8. Anisotropic Diffusion
- 4.9. Concentration-Dependence Diffusivity
- 4.10. Time-Dependent Diffusivity
- 4.11. Diffusion in Other Coordinate Systems
- 4.12. Summary
- Exercises
- Chapter 5. Multicomponent Diffusion
- 5.1. Introduction
- 5.2. Matrix Formulation of Diffusion in a Ternary System
- 5.3. Solution by Matrix Diagonalization
- 5.4. Uphill Diffusion
- 5.5. Summary
- Exercises
- Chapter 6. Numerical Solutions of the Diffusion Equation
- 6.1. Introduction
- 6.2. Dimensionless Variables
- 6.3. Physical Interpretation of the Finite Difference Method
- 6.4. Finite Difference Solutions
- 6.5. Considerations for Numerical Solutions
- 6.6. Summary
- Exercises
- Chapter 7. Atomic Models for Diffusion
- 7.1. Introduction
- 7.2. Thermally Activated Atomic Jumping
- 7.3. Square Well Potential
- 7.4. Parabolic Well Potential
- 7.5. Particle Escape Probability
- 7.6. Mean Squared Displacement of Particles
- 7.7. Einstein Diffusion Equation
- 7.8. Moments of a Function
- 7.9. Diffusion and Random Walks
- 7.10. Summary
- Exercises
- Chapter 8. Diffusion in Crystals
- 8.1. Atomic Mechanisms for Diffusion
- 8.2. Diffusion in Metals
- 8.3. Correlated Walks
- 8.4. Defects in Ionic Crystals
- 8.5. Schottky and Frenkel Defects
- 8.6. Equilibrium Constants for Defect Reactions
- 8.7. Diffusion in Ionic Crystals
- 8.8. Summary
- Exercises
- Chapter 9. Diffusion in Polycrystalline Materials
- 9.1. Defects in Polycrystalline Materials
- 9.2. Diffusion Mechanisms in Polycrystalline Materials
- 9.3. Regimes of Grain Boundary Diffusion
- 9.4. Diffusion Along Stationary vs. Moving Grain Boundaries
- 9.5. Atomic Mechanisms of Fast Grain Boundary Diffusion
- 9.6. Diffusion Along Dislocations
- 9.7. Diffusion Along Free Surfaces
- 9.8. Summary
- Exercises
- Chapter 10. Motion of Dislocations and Interfaces
- 10.1. Driving Forces for Dislocation Motion
- 10.2. Dislocation Glide and Climb
- 10.3. Driving Forces for Interfacial Motion
- 10.4. Motion of Crystal-Vapor Interfaces
- 10.5. Crystalline Interface Motion
- 10.6. Summary
- Exercises
- Chapter 11. Morphological Evolution in Polycrystalline Materials
- 11.1. Driving Forces for Surface Morphological Evolution
- 11.2. Morphological Evolution of Isotropic Surfaces
- 11.3. Evolution of Anisotropic Surfaces
- 11.4. Particle Coarsening
- 11.5. Grain Growth
- 11.6. Diffusional Creep
- 11.7. Sintering
- 11.8. Summary
- Exercises
- Chapter 12. Diffusion in Polymers and Glasses
- 12.1. Introduction
- 12.2. Stokes-Einstein Relation
- 12.3. Freely Jointed Chain Model of Polymers
- 12.4. Reptation
- 12.5. Chemically Strengthened Glass by Ion Exchange
- 12.6. Ion-Exchanged Glass Waveguides
- 12.7. Anti-Microbial Glass
- 12.8. Proton Conducting Glasses
- 12.9. Summary
- Exercises
- Chapter 13. Kinetics of Phase Separation
- 13.1. Thermodynamics of Mixing
- 13.2. Immiscibility and Spinodal Domes
- 13.3. Phase Separation Kinetics
- 13.4. Cahn-Hilliard Equation
- 13.5. Phase-Field Modeling
- 13.6. Summary
- Exercises
- Chapter 14. Nucleation and Crystallization
- 14.1. Kinetics of Crystallization
- 14.2. Classical Nucleation Theory
- 14.3. Homogeneous Nucleation
- 14.4. Heterogeneous Nucleation
- 14.5. Nucleation Rate
- 14.6. Crystal Growth Rate
- 14.7. Johnson-Mehl-Avrami Equation
- 14.8. Time-Temperature-Transformation Diagram
- 14.9. Glass-Ceramics
- 14.10. Summary
- Exercises
- Chapter 15. Advanced Nucleation Theories
- 15.1. Limitations of Classical Nucleation Theory
- 15.2. Statistical Mechanics of Nucleation
- 15.3. Diffuse Interface Theory
- 15.4. Density Functional Theory
- 15.5. Implicit Glass Model
- 15.6. Summary
- Exercises
- Chapter 16. Viscosity of Liquids
- 16.1. Introduction
- 16.2. Viscosity Reference Points
- 16.3. Viscosity Measurement Techniques
- 16.4. Liquid Fragility
- 16.5. Vogel-Fulcher-Tammann (VFT) Equation for Viscosity
- 16.6. Avramov-Milchev (AM) Equation for Viscosity
- 16.7. Adam-Gibbs Entropy Model
- 16.8. Mauro-Yue-Ellison-Gupta-Allan (MYEGA) Equation for Viscosity
- 16.9. Infinite Temperature Limit of Viscosity
- 16.10. Kauzmann Paradox
- 16.11. Fragile-to-Strong Transition
- 16.12. Non-Newtonian Viscosity
- 16.13. Volume Viscosity
- 16.14. Summary
- Exercises
- Chapter 17. Nonequilibrium Viscosity and the Glass Transition
- 17.1. Introduction
- 17.2. The Glass Transition
- 17.3. Thermal History Dependence of Viscosity
- 17.4. Modeling of Nonequilibrium Viscosity
- 17.5. Nonequilibrium Viscosity and Fragility
- 17.6. Composition Dependence of Viscosity
- 17.7. Viscosity of Medieval Cathedral Glass
- 17.8. Summary
- Exercises
- Chapter 18. Energy Landscapes
- 18.1. Potential Energy Landscapes
- 18.2. Enthalpy Landscapes
- 18.3. Landscape Kinetics
- 18.4. Disconnectivity Graphs
- 18.5. Locating Inherent Structures and Transition Points
- 18.6. ExplorerPy
- 18.7. Summary
- Exercises
- Chapter 19. Broken Ergodicity
- 19.1. What is Ergodicity?
- 19.2. Deborah Number
- 19.3. Broken Ergodicity
- 19.4. Continuously Broken Ergodicity
- 19.5. Hierarchical Master Equation Approach
- 19.6. Thermodynamic Implications of Broken Ergodicity
- 19.7. Summary
- Exercises
- Chapter 20. Master Equations
- 20.1. Transition State Theory
- 20.2. Master Equations
- 20.3. Degenerate Microstates
- 20.4. Metabasin Approach
- 20.5. Partitioning of the Landscape
- 20.6. Accessing Long Time Scales
- 20.7. KineticPy
- 20.8. Summary
- Exercises
- Chapter 21. Relaxation of Glasses and Polymers
- 21.1. Introduction
- 21.2. Fictive Temperature
- 21.3. Tool's Equation
- 21.4. Ritland Crossover Effect
- 21.5. Fictive Temperature Distributions
- 21.6. Property Dependence of Fictive Temperature
- 21.7. Kinetic Interpretation of Fictive Temperature
- 21.8. Stretched Exponential Relaxation
- 21.9. Prony Series Description
- 21.10. Relaxation Kinetics
- 21.11. RelaxPy
- 21.12. Stress vs. Structural Relaxation
- 21.13. Maxwell Relation
- 21.14. Secondary Relaxation
- 21.15. Summary
- Exercises
- Chapter 22. Molecular Dynamics
- 22.1. Multiscale Materials Modeling
- 22.2. Quantum Mechanical Techniques
- 22.3. Principles of Molecular Dynamics
- 22.4. Interatomic Potentials
- 22.5. Ensembles
- 22.6. Integrating the Equations of Motion
- 22.7. Performing Molecular Dynamics Simulations
- 22.8. Thermostats
- 22.9. Barostats
- 22.10. Reactive Force Fields
- 22.11. Tools of the Trade
- 22.12. Summary
- Exercises
- Chapter 23. Monte Carlo Techniques
- 23.1. Introduction
- 23.2. Monte Carlo Integration
- 23.3. Monte Carlo in Statistical Mechanics
- 23.4. Markov Processes
- 23.5. The Metropolis Method
- 23.6. Molecular Dynamics vs. Monte Carlo
- 23.7. Sampling in Different Ensembles
- 23.8. Kinetic Monte Carlo
- 23.9. Inherent Structure Density of States
- 23.10. Random Number Generators
- 23.11. Summary
- Exercises
- Chapter 24. Fluctuations in Condensed Matter
- 24.1. What are Fluctuations?
- 24.2. Statistical Mechanics of Fluctuations
- 24.3. Fluctuations in Broken Ergodic Systems
- 24.4. Time Correlation Functions
- 24.5. Dynamical Heterogeneities
- 24.6. Nonmonotonic Relaxation of Fluctuations
- 24.7. Industrial Example: Fluctuations in High Performance Display Glass
- 24.8. Summary
- Exercises
- Chapter 25. Chemical Reaction Kinetics
- 25.1. Rate of Reactions
- 25.2. Order of Reactions
- 25.3. Equilibrium Constants
- 25.4. First-Order Reactions
- 25.5. Higher Order Reactions
- 25.6. Reactions in Series
- 25.7. Temperature Dependence of Reaction Rates
- 25.8. Heterogeneous Reactions
- 25.9. Solid State Transformation Kinetics
- 25.10. Summary
- Exercises
- Chapter 26. Thermal and Electrical Conductivities
- 26.1. Transport Equations
- 26.2. Thermal Conductivity
- 26.3. Electrical Conductivity
- 26.4. Varistors and Thermistors
- 26.5. Summary
- Exercises
- Index
- No. of pages: 542
- Language: English
- Edition: 1
- Published: November 22, 2020
- Imprint: Elsevier
- Paperback ISBN: 9780128239070
- eBook ISBN: 9780128242162
JM