Macromolecules in Solution and Brownian Relativity
- 1st Edition, Volume 15 - May 27, 2008
- Author: Stefano Antonio Mezzasalma
- Language: English
- Hardback ISBN:9 7 8 - 0 - 1 2 - 3 7 3 9 0 6 - 3
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 5 5 7 9 8 - 4
Macromolecules in Solution and Brownian Relativity illustrates the recent picture of statistical physics of polymers and polymer solutions that emerges from some paradigms of con… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteMacromolecules in Solution and Brownian Relativity illustrates the recent picture of statistical physics of polymers and polymer solutions that emerges from some paradigms of contemporary science joint together. Among its principal aims are discussing the consequences of a novel self-diffusion theory, which benefits from an extension towards relativistic-like principles, and the generalization of usual concepts met in polymer science in terms of geometry alone. The monograph gives the whole fundamentals necessary to handle the view proposed, which is set in the final chapters. All the formers see about to provide the reader with a comprehensive treatation of the necessary fundamentals of classical, relativistic, quantum and statistical mechanics. Among the most important mechanical theories ever developed, a chapter on the Brownian movement and another on macromolecules prepare the ground that is specific to face universality and scaling behaviors in polymer solutions. The scope of the book is therefore two-fold: On the one hand, it wishes to involve the readers and scholars into a new research on polymer physics and chemistry. On the other, to get close chemical physicists and physical chemists to disciplines which, traditionally, are far from their direct fields of interest.
- Cross-disciplinarity
- Novelty
- Potentiality
Theoretical scientists; Applied scientists; Computationalists
1 Classical and Relativistic Mechanics 71.1 Historical Summary . . . . . . . . . . . . . . . . . . . . . . 71.2 Analytical Mechanics . . . . . . . . . . . . . . . . . . . . . . 141.2.1 Lagrangian Mechanics and Hamilton's Principle . . 141.2.2 Hamiltonian Mechanics . . . . . . . . . . . . . . . . 181.2.3 Poisson's Brackets and Canonical Transformations . 191.2.4 Liouville's Theorem . . . . . . . . . . . . . . . . . . 211.3 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . 221.3.1 Einstein's Postulates . . . . . . . . . . . . . . . . . . 221.3.2 Lorentz-Poincar_e Transformation . . . . . . . . . . . 231.3.3 Rules of Length Contraction and Time Dilation . . . 251.3.4 Classi_cation of Events . . . . . . . . . . . . . . . . 261.3.5 Notes on Tensor Analysis . . . . . . . . . . . . . . . 281.3.6 Covariant and Contravariant Vector Components . . 291.3.7 Tensor Formulation of Special Relativity . . . . . . . 311.3.8 Maxwell's Equations and Gauge Symmetry . . . . . 331.3.9 Lorentz-Poincar_e Invariance of Electrodynamics . . . 351.3.10 Doppler's E_ect . . . . . . . . . . . . . . . . . . . . 361.3.11 Criticism of the Einstein's Postulates . . . . . . . . . 371.4 Relativistic Mechanics . . . . . . . . . . . . . . . . . . . . . 401.4.1 Point Particle Dynamics . . . . . . . . . . . . . . . . 401.4.2 Energy and Momentum . . . . . . . . . . . . . . . . 411.4.3 Hamilton's Principle and Mechanics . . . . . . . . . 431.4.4 Experimental Con_rmations . . . . . . . . . . . . . . 441.4.5 Notes on General Field Theory and Noether's Theorem 451.5 General Relativity . . . . . . . . . . . . . . . . . . . . . . . 521.5.1 The Principle of Equivalence . . . . . . . . . . . . . 521.5.2 Curved and Accelerated Reference Frames . . . . . . 541.5.3 Curvatures, Geodesic Curves and Parallel Transport 551.5.4 Metric Tensor, A_ne Connection and Curvature Tensor 601.5.5 Tensor Densities . . . . . . . . . . . . . . . . . . . . 641.5.6 Covariant Di_erentiation and Principle of GeneralCovariance . . . . . . . . . . . . . . . . . . . . . . . 651.5.7 Postulate of Geodesic Motion and Free Falling Frame 671.5.8 Extremal Proper Time . . . . . . . . . . . . . . . . . 691.5.9 Energy-Momentum Tensor and Conservation Law . 711.5.10 Einstein's Field Equations . . . . . . . . . . . . . . . 761.6 Particular Solutions and Reference Frames . . . . . . . . . . 821.6.1 Weak and Stationary Field Approximation . . . . . 821.6.2 Riemann's Normal and Harmonic Coordinates . . . 831.6.3 General Static Isotropic Metric . . . . . . . . . . . . 841.6.4 Geodesic Light Deflection and Parametrized Metric . 851.6.5 Schwarzschild's Metric . . . . . . . . . . . . . . . . . 881.6.6 Friedmann-Lemaîitre-Robertson-Walker Metric . . . 891.6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . 922 Special Brownian Relativity 952.1 Brownian Motion and Difffsion (Notes) . . . . . . . . . . . 952.1.1 Historical Summary . . . . . . . . . . . . . . . . . . 952.1.2 Einstein's Approach and Bachelier-Wiener Process . 1012.1.3 The Sutherland-Stokes-Einstein Equation . . . . . . 1062.1.4 Notes on Hydrodynamics . . . . . . . . . . . . . . . 1082.1.5 Smoluchowski's Formalism . . . . . . . . . . . . . . 1112.1.6 Langevin's Equation and Spatio-Temporal Scales . . 1142.1.7 Markov's Processes and Fokker-Planck Formalism . 1182.1.8 Rotational Brownian Motion . . . . . . . . . . . . . 1212.1.9 Notes on Fluctuation-Dissipation Theorem . . . . . 1232.2 Postulates of Brownian Relativity . . . . . . . . . . . . . . . 1292.2.1 Equivalence of Time-like and Shape-like Observers . 1292.2.2 The Invariant Diffusive Interval . . . . . . . . . . . . 1342.2.3 Random Walk and Rouse's Chain . . . . . . . . . . 1362.2.4 Brownian Lorentz-Poincaré Transformations . . . . . 1402.2.5 Fick's Diffusion Equation . . . . . . . . . . . . . . . 1432.2.6 Fluctuations, Dissipation and Collisions . . . . . . . 1462.3 Real Polymer in a Minkowskian Fluid . . . . . . . . . . . . 1492.3.1 Intrinsic Viscosity as a Brownian-Lorentz Factor . . 1492.3.2 Zimm's, Kirkwood's and Flory's Regimes . . . . . . 1522.3.3 Characteristic Function for Diffusive Intervals . . . . 1532.3.4 Real Polymer Size . . . . . . . . . . . . . . . . . . . 1573 General Brownian Relativity 1613.1 Geometric Approach to Polymers in Solution . . . . . . . . 1613.1.1 Principle of Equivalence for Brownian Statistics andGeometry . . . . . . . . . . . . . . . . . . . . . . . . 1613.1.2 Statistical Pseudo-Coordinates . . . . . . . . . . . . 1633.1.3 Brownian Metric Tensor . . . . . . . . . . . . . . . . 1643.1.4 Postulate of Geodesic Brownian Motion . . . . . . . 1683.1.5 Brownian-Einstein Equations . . . . . . . . . . . . . 1693.1.6 Energy-Momentum and Polymeric Stress Tensors . . 1703.1.7 "Static and Isotropic" Polymer Solutions . . . . . . 1723.1.8 Schwarzschild's Single Coil . . . . . . . . . . . . . . 1733.1.9 Concentrated Polymer Solutions . . . . . . . . . . . 1743.1.10 Weak and Stationary Limit . . . . . . . . . . . . . . 1783.1.11 Macromolecular Continuity Equation . . . . . . . . . 1793.1.12 Scaling and Polymer Volume Fraction . . . . . . . . 1813.1.13 Fluctuating-Deflecting Entanglement Points . . . . . 1843.1.14 Scaling Behavior in Semidilute Solutions . . . . . . . 1873.2 Statistical Gauge Transformation . . . . . . . . . . . . . . . 1913.2.1 Extended Heat-Diffusion Equation . . . . . . . . . . 1913.2.2 Lagrangian Theory and Klein-Gordon Field . . . . . 1943.3 Outlook and Notes . . . . . . . . . . . . . . . . . . . . . . . 1984 The Covariant Scaling of Probability 2014.1 Vineyard's Van Hove Distribution Function . . . . . . . . . 2024.2 True Self-Avoiding Walk Polymer . . . . . . . . . . . . . . . 2064.2.1 Self-Correlation Functions of Chain and Liquid Molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . 2064.2.2 Ornstein-Uhlenbeck Spatial Process . . . . . . . . . 2084.2.3 Percus-Yevick-Wertheim Scaling Hypothesis . . . . . 2104.2.4 "True" Self-Avoidance from Molecular Correlations . 2114.3 Turbulently Advected Passive Scalar . . . . . . . . . . . . . 2174.3.1 Fluid Turbulence and Brownian Relativity . . . . . . 2174.3.2 Passive Scalar Advection and Intermittency (Notes) 2194.3.3 Polymer Topology and Turbulence Statistics . . . . 2214.3.4 Brownian-Relativistic Anomalous Exponents . . . . 2224.3.5 Passive Structure Exponents and (Star) PolymerConfigurations . . . . . . . . . . . . . . . . . . . . . 2245 Shape Mechanics 2315.1 Brownian Simultaneity and Uncertainty . . . . . . . . . . . 2325.2 Geometrical Lorentz-Poincaré Symmetry . . . . . . . . . . . 2345.3 The Static Uncertainty Relation . . . . . . . . . . . . . . . 2364 CONTENTS5.3.1 For Geometry . . . . . . . . . . . . . . . . . . . . . . 2365.3.2 For Topology . . . . . . . . . . . . . . . . . . . . . . 2385.3.3 For Matter and Position . . . . . . . . . . . . . . . . 2395.4 Materiality and Geometry of Energy . . . . . . . . . . . . . 2405.4.1 Energy Surface as a "Material Shell" . . . . . . . . . 2405.4.2 Horocyclic Energy Projection . . . . . . . . . . . . . 2425.4.3 A Geometrical System of Units . . . . . . . . . . . . 2435.5 n-Molecular Systems and Pairwise Potential . . . . . . . . . 2455.5.1 Total Curvature Equation . . . . . . . . . . . . . . . 2455.5.2 Liquid Density Correlation Functions . . . . . . . . 2485.6 The Shape-Mechanical Issue . . . . . . . . . . . . . . . . . . 2525.6.1 Figures as Slits in Young's Experiment . . . . . . . . 2535.6.2 The Geometrical Wave Function . . . . . . . . . . . . . . . . . 2545.6.3 Geometrical Wave Equation (in Harmonic Form) . . 2555.6.4 N-mer Conformations versus n-mer Configurationsin Polysaccharide Molecules . . . . . . . . . . . . . . 2595.7 Outlook and Notes . . . . . . . . . . . . . . . . . . . . . . . 266
- No. of pages: 248
- Language: English
- Edition: 1
- Volume: 15
- Published: May 27, 2008
- Imprint: Academic Press
- Hardback ISBN: 9780123739063
- eBook ISBN: 9780080557984
SM
Stefano Antonio Mezzasalma
S.A. Mezzasalma is a contract professor and researcher at the University of Trieste and, in particular, a theoretical chemical physicist of soft condensed matter. His main research activity covered a number of topics in macromolecular, colloid and interface sciences, producing several tens of single-authored publications. Author of a recent book, “Macromolecules in Solution and Brownian Relativity”, published within the Interface Science and Technology Series of Academic Press & Elsevier (2008). He lately started to work on several issues in nanoscience and supramolecular chemistry, and collaborate within the EC Advanced Grant “Carbonanobridge”, at the cutting edge between chemical and biological physics.
Affiliations and expertise
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, ItalyRead Macromolecules in Solution and Brownian Relativity on ScienceDirect