Skip to main content

Save up to 20% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 20% on print and eBooks.

Machine Learning: Theory and Applications

1st Edition, Volume 31 - May 16, 2013

Editors: C.R. Rao, Venu Govindaraju

Language: English
Hardback ISBN:
9 7 8 - 0 - 4 4 4 - 5 3 8 5 9 - 8
eBook ISBN:
9 7 8 - 0 - 4 4 4 - 5 3 8 6 6 - 6

Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to… Read more

Machine Learning: Theory and Applications

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote
Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security.