
Machine Learning in Geohazard Risk Prediction and Assessment
From Microscale Analysis to Regional Mapping
- 1st Edition - July 3, 2025
- Latest edition
- Editors: Biswajeet Pradhan, Daichao Sheng, Xuzhen He
- Language: English
- Paperback ISBN:9 7 8 - 0 - 4 4 3 - 2 3 6 6 3 - 1
- eBook ISBN:9 7 8 - 0 - 4 4 3 - 2 3 6 6 4 - 8
Machine Learning in Geohazard Risk Prediction and Assessment: From Microscale Analysis to Regional Mapping presents an overview of the most recent developments in machine learni… Read more

- Introduces machine-learning techniques in the risk management of geo-hazards, particularly recent developments
- Covers a broader category of research and machine-learning techniques that can be applied, from microscopic modeling to constitutive modeling, to physics-based numerical modeling, to regional susceptibility mapping
- Contains contributions from top researchers around the world, including authors from the UK, USA, Australia, Austria, China, and India
1. Machine learning methods
2. Connections between studies across different scales
3. Summary and outlook
Part 2: Machine learning in microscopic modelling of geo-materials.
4. Machine-learning-enabled discrete element method
5. Machine learning in micromechanics based virtual laboratory testing
6. Integrating X-ray CT and machine learning for better understanding of granular materials
7. Summary and outlook
Part 3: Machine learning in constitutive modelling of geo-materials.
8. Thermodynamics-driven deep neural network as constitutive equations
9. Deep active learning for constitutive modelling of granular materials
10. Summary and outlook
Part 4: Machine learning in design of geo-structures.
11. Deep learning for surrogate modelling for geotechnical risk analysis
12. Deep learning for geotechnical optimization of designs
13. Deep learning for time series forecasting in geotechnical engineering
14. Summary and outlook
Part 5: Machine learning in geo-risk susceptibility mapping for regions of various sizes.
15. Deep learning and ensemble modeling of debris flows, mud flows and rockfalls.
16. Integrating machine learning and physical-based models in landslide susceptibility and hazard mapping.
17. Explainable AI (XAI) in landslide susceptibility, hazard, vulnerability and risk assessment.
18. New approaches for data collection for susceptibility mapping
19. Summary and outlook
- Edition: 1
- Latest edition
- Published: July 3, 2025
- Language: English
BP
Biswajeet Pradhan
Professor Pradhan is a globally recognized expert in geospatial analytics and artificial intelligence applications in Earth and environmental sciences. Currently a Distinguished Professor at the University of Technology Sydney (UTS), Australia, he also leads the Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS). With a PhD in GIS-based modeling, Prof. Pradhan has over two decades of experience in spatial data science, remote sensing, natural hazard modeling, and environmental monitoring. He has been listed among the world's top 2% scientists by Stanford University and received numerous international awards, including from IEEE and Elsevier. A Fellow of the Royal Geographical Society (FRGS), he also serves on editorial boards of several top-tier journals. His research integrates geospatial AI and deep learning for disaster risk reduction, land use planning, and sustainability.
DS
Daichao Sheng
XH